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256 Module 11. Directed Graphs

Graphs that we studied in chapters 1 to 10 are inadequate to model many

real world problems. These include one-way message routings and Turing machine

computations. In all such problems one requires the notion of direction from one

node to another node.

11.1 Basic concepts

Definition. A directed graph D is a triple (V,A, ID) where V and A are disjoint

sets and ID : A→ V × V is a function.

◦ An element of V is called a vertex.

◦ An element of A is called an arc.

Often we call a directed graph as a digraph. As in the case of graphs we

assume that V and A are finite sets and denote |V | by n and |A| by m. If more than

one graph are under discussion, we denote V,A, n and m by V (D), A(D), n(D) and

m(D), respectively.

An example of a digraph:

Let V = {1, 2, 3, 4, 5}, A = {a, b, c, d, e, f, g, h} and ID : A→ V ×V be defined

by ID(a) = (1, 2), ID(b) = (2, 3), ID(c) = (3, 2), ID(d) = (4, 3), ID(e) = (4, 1),

ID(f) = (4, 1), ID(g) = (3, 5), ID(h) = (5, 5). Then (V,A, ID) is a digraph with 5

vertices and 8 arcs. It is represented as follows:

>
g

>
d

> f>e

>
a

> c<b <

h

4 3 5

1 2

Figure 11.1: A digraph.
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As in the case of graphs e and f are multiple arcs and h is a loop. However,

b and c are not multiple arcs.

If ID(x) = (u, v), then x is denoted by x(u, v) and say that

◦ u is the tail of x.

◦ v is the head of x.

◦ x is an arc from u to v.

◦ If x(u, u) is a loop, then u is its head and also its tail.

◦ A directed graph with no multiple arcs and no loops is called a simple digraph.

• Underlying graph of a digraph

The underlying graph G(D) of a digraph D(V,A, ID) is obtained by ignoring

the direction of its arcs. Formally, V (G) = V, E(G) = A and IG : A→ V (2) is defined

by IG(a) = (u, v), if ID(a) = (u, v) or (v, u). The underlying graph of a digraph is

shown below.

><

>>

><

<

D
2 3 4

1

G(D)

2 3 4

1

Figure 11.2: A digraph and its underlying graph.

Often we call a graph as an undirected graph if both a graph and a digraph

are under discussion.

The various subdigraphs of a digraph D are defined analogous to subgraphs

of a graph. We continue to use the notation D −W (where W ⊆ V (D)) and D − B
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(where B ⊆ A(D)) for the subdigraphs obtained from D by deleting a set of vertices

and a set of arcs.

The concepts of degrees, walks and connectivity are defined taking into account

the direction of arcs.

• Out-degrees and in-degrees

Definitions. Let D be a digraph and v be a vertex.

◦ The out-degree of v is the number of arcs with v as their tail. It is denoted by
outdegD(v).

◦ The set
Nout(v) = {x ∈ V (D) : (v, x) ∈ A(D)}

is called the set of out-neighbors of v. Clearly, if D is simple, then |Nout(v)| =
outdeg(v).

◦ The in-degree of v is the number of arcs with v as their heads. It is denoted
by indegD(v).

◦ The set
Nin(v) = {x ∈ V (D) : (x, v) ∈ A(D)}

is called the set of in-neighbors of v. Clearly, if D is simple, then |Nin(v)| =
indeg(v).

So each vertex v in a digraph is associated with an ordered pair (outdeg(v), indeg(v))

of integers; see Figure 11.3.

>>

>>

<

>< <

z

(3, 0)

v

(2, 2)

u

(2, 1)

x

(0, 3)

y

(2, 1)

Figure 11.3: Out-degrees and in-degrees of vertices. Nout(x) = ∅, Nin(x) = {y, z},
Nout(y) = {x, v}, Nin(y) = {v}, Nout(u) = {u}, Nin(u) = {u, v}.
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Theorem 11.1. For every digraph D,

∑
v∈V (D)

outdeg(v) =
∑

v∈V (D)

indeg(v) = m.

Proof. Every arc is counted once in
∑
outdeg(v) and once in

∑
indeg(v).

• Isomorphism

Definition. Two digraphs D1(V1, A1, ID1) and D2(V2, A2, ID2) are said to be isomor-

phic if there exist bijections f : V1 → V2 and g : A1 → A2 such that x is an arc from

u to v in D1 if and only if g(x) is an arc from f(u) to f(v) in D2.

The pair of functions (f, g) is called an Isomorphism. If D1 and D2 are

isomorphic, we write D1 ' D2.

Figure 11.4 shows isomorphic and non-isomorphic digraphs.

<

>

>
<

D1

>

<
<

<

D2

<

>

>
>

D3

Figure 11.4: D1 ' D2, D1 6' D3.

Remark. If D1(V1, A1) and D2(V2, A2) are simple digraphs, then D1 ' D2 if and

only if there exists a bijection f : V1 → V2 such that (u, v) ∈ A1 if and only if

(f(u), f(v)) ∈ A2.

11.2 Directed walks, paths and cycles

Definitions. Let D be a digraph and let v0, vt ∈ V (D).
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◦ An alternating sequence

W (v0, vt) := (v0, a1, v1, a2, v2, . . . , vt−1, at, vt)

of vertices and arcs where ai (1 ≤ i ≤ t) is an arc from vi−1 to vi is called a
(v0, vt)-directed walk or a directed walk from v0 to vt. Here, the vertices
or arcs need not be distinct.

◦ v0 is called the origin and vt is called the terminus of W (v0, vt). Its length is
defined to be t, the number of arcs, where an arc is counted as many times as
it occurs.

◦ A (v0, vt)-walk is called a (v0, vt)-trail if all its arcs are distinct.

◦ A (v0, vt)-walk is called a (v0, vt)-path if all its vertices (and) hence arcs are
distinct. A path is denoted by the sequence of vertices alone if no confusions is
anticipated.

◦ A W (v0, vt) is called a closed directed walk if v0 = vt.

◦ A closed directed walk W (v0, vt) is called a directed cycle if all its vertices are
distinct except that v0 = vt.

Remark. In all these definitions, the adjective “directed” can be dropped if it is clear

from the context that we are concerned with directed graphs.

We illustrate these concept by taking a digraph.

<
g

<
f

> b>a

>
c

> e<d <

h

4 3 5

1 2

Figure 11.5: A digraph D.

(i) W1(5, 4) = (5, g, 3, e, 2, d, 3, e, 2, d, 3, f, 4)

is a directed walk of length 6. It is neither a trail nor a path.
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(ii) W2(5, 4) = (5, g, 3, e, 2, d, 3, f, 4)

is a directed trail of length 4. It is not a path.

(iii) W2(5, 4) = (5, g, 3, f, 4)

is a directed path of length 2.

(iv) W3(1, c, 2, d, 3, f, 4, b, 1)

is a directed cycle of length 4.

Remarks.

◦ If there exists a (v0, vt)- directed walk, it is not necessary that, there exists a
(vt, v0)-directed walk. In the above example, we have a (5,4)-directed walk but
no (4,5)-directed walk.

◦ If there exists a (v0, vt)-directed walk, there exists a (v0, vt)-directed path.

• Connectivity in digraphs

Definitions.

◦ A digraph is said to be weakly connected if its underlying graph is connected;
otherwise, it is said to be disconnected.

◦ A digraph is said to be unilaterally connected if given any two vertices u and
v, there exists a directed path from u to v or a directed path from v to u.

◦ A digraph is said to be strongly connected or strong if given any two vertices
u and v, there exists a directed path from u to v and a directed path from v to
u.

Clearly, D is strongly connected⇒ D is unilaterally connected⇒ D is weakly

connected. The converse implications do not hold; see Figure 11.6.

Theorem 11.2. A digraph D is strong if and only if it contains a closed directed

walk which contains all its vertices.
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> >
D1

>

>

<

>

D2

>

>

>

>

D3

>

>

>
<

D4

Figure 11.6: D1 is disconnected; D2 is weakly connected but it is not unilaterally
connected; D3 is unilaterally connected but it is not strongly connected; D4 is strongly
connected.

Proof. (1) D is strong ⇒ D contains a closed directed walk which contains all its

vertices.

Since D is strong, if u, v ∈ V (D), then there exist directed paths P1(u, v) and

P2(v, u). Therefore, D contains a closed directed walk (P1(u, v), P2(v, u)). Among all

the closed directed walks, let W (x, x) be a closed directed walk containing maximum

number of vertices.

>
P

>
P

<
Q

<
Q

>

><

<

W (x, x)

x y

Figure 11.7: Extension of W (x, x).

Our aim is to show that W contains all the vertices of D. On the contrary,

suppose that there exists a vertex y ∈ V (D)−V (W ). Since D is strong, there exist di-

rected paths P (x, y) and Q(x, y); see Figure 11.7. But then (W (x, x), P (x, y), Q(y, x))

is a closed directed walk containing more number of vertices than W , a contradiction

to the maximality of W . Therefore, W (x, x) contains all the vertices of D.
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(2) D contains a closed directed walk which contains all the vertices of D ⇒ D is

strong.

Let W (x, x) be a closed directed walk containing all the vertices of D. Let

u, v ∈ V (D) = V (W ). Since W is closed, W contains directed subwalks W1(u, v) and

W2(v, u). Hence D is strong.

Theorem 11.3. A digraph D is unilaterally connected if and only if it contains a

directed walk (not necessarily closed) containing all the vertices of D.

Proof. (1) D is unilateral ⇒ D contains a directed walk containing all the vertices

of D.

Among all the directed walks in D, let W be a directed walk containing maxi-

mum number of vertices of D. Let W = W (u0, ut) = (u0, e1, u1, e2, u2, . . . , ut−1, et, ut).

We assert that W contains all the vertices of D. On the contrary, suppose that there

exists a vertex x ∈ V (D)− V (W ); see Figure 11.8.

u0
> >

u2u1
>

uj uj+1
>

> >
> <

ut

x

Figure 11.8: Extension of W (u0, ut).

Claim 1: There exists a (u0, x)-walk.

Else, there exists a (x, u0)-walk, say W ′(x, u0), since D is unilaterally con-

nected. But then (W ′(x, u0),W (u0, ut)) is a walk in D containing more number of

vertices than W , a contradiction to the maximality of W.
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Claim 2: If there exists a (uj, x)-walk for some j, 1 ≤ j ≤ t− 1, then there does not

exist a (x, uj+1)-walk in D.

On the contrary, suppose there exist walks Wj(uj, x) and Wj+1(x, uj+1). But

then

(W (u0, uj),Wj(uj, x),Wj+1(x, uj+1),W (uj+1, ut))

is a (u0, ut)-walk containing more number of vertices than W , a contradiction to the

maximality of W .

Claims 1 and 2 imply that there exist a (ut, x)-walk, say W ′(ut, x). But then

(W (u0, ut),W
′(ut, x)) is a (u0, x)-walk containing more number of vertices than W ,

a contradiction as before.

Therefore, W (u0, ut) contains all the vertices of D.

(2) D contains a directed walk W containing all the vertices of D ⇒ D is unilateral.

Let u, v ∈ V (D) = V (W ). Then W contains a directed (u, v)-subwalk if u

precedes v in W or a (v, u)-subwalk if v precedes u in W . Hence D is unilateral.

Theorem 11.4. Let D be a simple digraph satisfying any one of the following two

conditions for some integer p:

(1) outdeg(v) ≥ p ≥ 1, for every vertex v.

(2) indeg(v) ≥ p ≥ 1, for every vertex v.

Then D contains a directed cycle of length ≥ p+ 1.

Proof. It is similar to the proof of Theorem 2.2. (Hint: choose a directed path of

maximum length, say P (x, y). If (1) holds, then look at Nout(y), and if (2) holds,

then look at Nin(x).)
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Corollary. If D is a digraph satisfying any of the conditions stated in the above

theorem, then D contains a directed cycle.

11.3 Orientation of a graph

Definition. If G is a graph, then an orientation of G is a digraph D(G) obtained

by orienting each edge (x, y) of G from x to y or y to x but not in both directions.

G

>
>

>
>

<
<

D1(G)

>
<

>

>

<
>

D2(G)

Figure 11.9: A graph G and two of its orientations.

Remark. Given a loopless graph G, there are 2m orientations of G (some of which

may be isomorphic).

Definition. An orientation D(G) of a graph G is called a strong orientation if

D(G) is a strong digraph.

A graph G may not admit a strong orientation. For example, P3 does not

admit a strong orientation. (Why?) But K3 admits a strong orientation.

A motivation for the definition of strong orientation is the following real-world

problem.

When is it possible to make the roads of a city one-way in such a way that every

corner of the city is reachable from every other corner ?
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Consider the road map of Figure 11.10a. It is impossible to make all the roads

one-way as required. The impossibility is because of the road connecting the school

and the garden.

Bus stand School

Rly. station Market

Garden
(a)

>

<

<

>
>

>

<

Bus stand School

Rly. station Market

Garden
(b)

Figure 11.10: A road map.

However, if we have an additional road connecting the market and the garden,

it is possible to make all the roads one-way as required (see Figure 11.10b.)

Definition. A graph G is said to be strongly orientable if it is possible to give an

orientation to each edge of G so that the resulting digraph is strongly connected.

>

>

<

> <

<

<
>

< <

Figure 11.11: A graph G and its two strong orientations.

Thus in graph theoretic terminology, the one-way traffic problem is to charac-

terize those graphs which are strongly orientable.

Theorem 11.5. A connected graph G is strongly orientable if and only if G has no

cut-edges.

Proof. (1) G is strongly orientable ⇒ G has no cut-edge.

Let D be a strong-orientation of G. Let (u, v) be an arbitrary edge of G. So,

(u, v) ∈ A(D) or (v, u) ∈ A(D); say (u, v) ∈ A(D). Since D is strongly connected,
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there exists a directed path P (v, u). But then (u, (u, v), P (v, u)) is a cycle in G

containing the edge (u, v). Hence by Theorem 2.15, (u, v) is not a cut-edge.

(2) G has no cut-edge ⇒ G is strongly orientable.

Assume for the moment that a subgraph H with V (G) − V (H) 6= ∅ has

been strongly oriented. Since V (G) 6= V (H) and G is connected, there is an edge

e(u0, u1) ∈ E(G) − E(H), where u0 ∈ V (H) and u1 ∈ V (G) − V (H). Since e is not

a cut-edge, there is a cycle C(u0, u0) = (u0, u1, . . . , up = u0) in G containing e; see

Figure 11.12.

>>
e

<<

H >P (u0, ui)

u0 u1

ui

Figure 11.12: A step in the proof of Theorem 11.5.

Let ui be the first vertex which succeeds u1 and is in V (H). (Note that ui

exists because up = u0). Orient the path (u0, u1, . . . , ui) from u to ui so that it

becomes a directed path P (u, ui). Clearly, the subdigraph H1 which contains H and

the directed path P (u, ui) is strongly connected. If we now arbitrarily orient the

edges, whose end-vertices lie in V (H) ∪ {u0, u1, . . . , ui}, we get a strong orientation

of the subgraph induced on V (H) ∪ {u0, u1, . . . , ui}. Moreover this new subdigraph

contains at least one more edge. This gives us a hint to orient the whole graph G.

Since G has no cut-edges, it contains a cycle, say C. Orient C (in one of the

two possible ways), so that it becomes a directed cycle C∗; obviously C∗ is strongly

connected. If C∗ contains all the vertices of G, then we are through (after arbitrarily

orienting the edges of (E(G)− E(C))).
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If C∗ does not contain all the vertices of G, extend the orientation of C∗ to a

larger digraph G1 as explained above. This kind of extension can be continued until

all the edges of G are oriented.

11.4 Eulerian and Hamilton digraphs

Eulerian digraphs and Hamilton digraphs are straight forward generalizations

of Eulerian graphs and Hamilton graphs. Results too are analogous. However, a few

results are harder to prove and even to anticipate.

• Eulerian digraphs

Definitions.

◦ A directed trail in a digraph D is called an Eulerian trail if it contains all the
arcs in D. It can be open or closed.

◦ A digraph is called an Eulerian digraph if it contains a closed Eulerian trail.

<

>

>

D1

<

<

>

< >

<

D2

>

<

>

D3

Figure 11.13: D1 and D2 are Eulerian digraphs and D3 is a non-Eulerian digraph.

Theorem 11.6. A digraph D is Eulerian if and only if

(i) D is weakly connected, and

(ii) outdeg(v) = indeg(v), for every vertex v.

Proof. It is similar to the proof of Theorem 5.1 and hence it is left as an exercise.
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• Hamilton digraphs

You may recall from Chapter 6, that there are no characterizations of Hamilton

graphs. It is no surprise that there are no characterizations of Hamilton digraphs

either. In this section, we prove a sufficient condition for a simple digraph to contain

a directed Hamilton cycle which is analogous to Dirac condition for Hamilton graphs.

Definitions.

◦ A directed path in a digraph D is called a Hamilton directed path if it con-
tains all the vertices of D.

◦ A directed cycle in D is called a Hamilton directed cycle if contains all the
vertices of D.

◦ A directed graph D is called a Hamilton digraph if it contains a directed
Hamilton cylcle.

<

>

>

> >

D1

>

>

>

> >

D2

>

>

<

> <

D3

Figure 11.14: D1 contains no directed Hamilton path. D2 contains a directed Hamil-
ton path but contains no directed Hamilton cycle. D3 contains a directed Hamilton
cycle and hence it is a directed Hamilton graph.

Remarks.

◦ D contains a directed Hamilton cycle ⇒ D contains a directed Hamilton path.

◦ D contains a directed Hamilton path 6⇒ D contains a directed Hamilton cycle.

◦ D contains a directed Hamilton path ⇒ D is unilaterally connected (Theorem
11.3.)

◦ D is Hamilton ⇒ D is strong (Theorem 11.2).
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Theorem 11.7 (Ghoulia-Houri, 1960). If D is a simple digraph such that

(i) n ≥ 3,

(ii) outdeg(v) ≥ n
2
, for every vertex v, and

(iii) indeg(v) ≥ n
2
, for every vertex v,

then D contains a directed Hamilton cycle.

Proof. (Contradiction method) Assume that the result is false. Let C be a directed

cycle in D containing maximum number of vertices. By our assumption, V (D) −

V (C) 6= ∅. Let P be a directed path in D − V (C) containing maximum number of

vertices; let P = P (a, b). Let |V (C)| = k and V (P ) = p. Fix the clock-wise direction

to C; see Figure 11.15.

C

>

>
><

>

<

<>
>

P

s

t

a

b

Figure 11.15: A maximum cycle C and a maximum path P in D − V (C).

Clearly,

(1) n ≥ k + p,

(2) k > n
2

(by Theorem 11.4),

(3) Nin(a) ⊆ V (P − a) ∪ V (C), by the maximality of V (P ).

(4) Nout(b) ⊆ V (P − b) ∪ V (C), by the maximality of V (P ).
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Define:

S = {s ∈ V (C) : (s, a) ∈ A(D)} and

T = {t ∈ V (C) : (b, t) ∈ A(D)}.

Then

(5)

|S| ≥ indeg(a)− (p− 1) (by (3))

≥ n
2
− p+ 1, by the hypothesis

≥ n
2
− (n− k) + 1 (by (1))

= −n
2

+ k + 1

≥ 1 (by (2)).

Similarly,

|T | ≥ 1.

Since |S| ≥ 1 and |T | ≥ 1, we can choose s ∈ S and t ∈ T such that t is a successor

of s on C and no internal vertex of the directed subpath C[s, t] belongs to S ∪ T .

Claim 1: There are at least p internal vertices in C[s, t].

Else, the cycle

(s, a, P (a, b), b, t, C[t, s], s)

has more number of vertices than C, a contradiction to the maximality of V (C).

Claim 2: If (s, x) ∈ A(C), then x /∈ T .

Else, we get a larger cycle as in the proof of Claim 1.
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Therefore, there are at least p + (|S| − 1) vertices on C which are not in T .

Hence, using claims (1) and (2) we conclude that

k = |V (C)| ≥ p+ (|S| − 1) + |T |,

= (|S|+ |T |) + p− 1,

= 2(n
2
− p+ 1) + p− 1,

(since |S| ≥ n
2
− p+ 1 and |T | ≥ n

2
− p+ 1, see (5))

= n− p+ 1.

We have thus arrived at a contradiction to (1).

11.5 Tournaments

Tournaments form an interesting class of digraphs. They are being indepen-

dently studied. An entire book of J. W. Moon (1968) is devoted to tournaments.

Further survey has been done by K. B. Reid and L. W. Bineke (1978).

Definition. An orientation of a complete graph is called a tournament.

So in a tournament D either (u, v) ∈ A(D) or (v, u) ∈ A(D) (but not both),

for every pair u, v of distinct vertices. A few small tournaments are shown in Figure

11.16.

> >

<

>

<

>
>

<

<

>

< >
<

>

>

>>

<

<

>

<

>

<

Figure 11.16: Tournaments.
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Definition. A vertex v is said to be reachable from a vertex u, if there is a directed

path from u to v.

Theorem 11.8. If u is a vertex of maximum out-degree in a tournament D, then

every vertex is reachable from u by a directed path of length at most 2.

Proof. Consider the sets Nout(u) = {u1, u2, . . . , ur} and Nin(u) = {v1, v2, . . . , vs},

where r = outdeg(u) and s = indeg(u). Since D is a tournament, V (D) − {u} =

Nout(u) ∪Nin(u) and Nout(u) ∩Nin(v) = ∅.

Nout(u)

Nin(u)

uj

vi

>

>
>

u1

v1

<

>
ur

vs

u

<
<

...

...

Figure 11.17

Clearly, every uj is reachable from u by a path of length 1. We next assert

that for every vi (1 ≤ i ≤ s), there is some uj (1 ≤ j ≤ r) such that (uj, vi) is an arc

in D; so that vi is reachable from u by a path of length 2, namely (u, uj, vi). Assume

that our assertion is false for some vi. Then (vi, uj) is an arc for every j (1 ≤ j ≤ r).

Hence,

Nout(vi) ⊇ {u1, u2, . . . , ur} ∪ {u}.

Thus, outdeg(vi) ≥ outdeg(u) + 1, a contradiction to the maximality of outdeg(u).

Hence, our assertion indeed holds and the theorem follows.

Theorem 11.9. Every tournament D contains a directed Hamilton path.
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Proof. We prove the theorem by induction on n. If n = 1 or 2, then the theorem is

obvious. Assume that a tournament contains a directed Hamilton path if it has n− 1

vertices and let D contain n vertices.

Let v ∈ V (D) and consider the tournament D − v. By induction hypothesis,

D − v contains a directed Hamilton path say (v1, v2, . . . , vn−1); see Figure 11.18.

v1
> >
v2 vj−1

> >
vj

>
vn−1

>

v

>

> >

Figure 11.18: Extension of a path.

We make 3 cases and prove that D contains a directed Hamilton path in each

case.

Case 1: (v, v1) is an arc D.

Clearly, (v, v1, v2, . . . , vn−1) is a directed Hamilton path in D.

Case 2: (v, v1) is not an arc (and hence (v1, v) is an arc) but there is some i (2 ≤

i ≤ n− 1) such that (v, vi) is an arc.

Let j (2 ≤ j ≤ n− 1) be the smallest integer such that (v, vj) is an arc in D.

This means that (v, vj−1) is not an arc; and hence (vj−1, v) is an arc. But then

(v1, v2, . . . , vj−1, v, vj, vj+1, . . . , vn−1)

is a directed Hamilton path in D.

Case 3: There is no i (1 ≤ i ≤ n− 1), such that (v, vi) is an arc.

This means, in particular, (vn−1, v) is an arc in D. But then

(v1, v2, . . . , vn−1, v)
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is a directed Hamilton path in D.

Corollary. Every tournament is unilaterally connected.

Proof. A consequence of Theorem 11.3.

A tournament need not contain a directed Hamilton cycle. In Figure 11.16,

the second and third tournaments are non-Hamilton whereas the others are Hamilton.

However, every strong tournament on at least three vertices, contains a directed

Hamilton cycle. We shall prove a stronger assertion.

Theorem 11.10. Every strong tournament D on n (≥ 3) vertices contains a directed

cycle of length k, for every k, 3 ≤ k ≤ n.

Proof. We first prove that D contains a directed 3-cycle and next show that, if D

contains a directed k-cycle, for some k (3 ≤ k ≤ n − 1), then it contains a directed

(k + 1)-cycle; so that D contains a directed k-cycle, for every k, 3 ≤ k ≤ n.

(1) D contains a directed 3-cycle.

Let v ∈ V (D) and consider Nout(v) and Nin(v); see Figure 11.19.

Nout(v)

Nin(v)

>
>

w
<

>
u

v

<
<

>

...

...

Figure 11.19: A 3-cycle in a strong tournament.

Since D is strongly connected, Nout(v) and Nin(v) are non-empty. Moreover, there is
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an arc (u,w) in D where u ∈ Nout(v) and w ∈ Nin(v) because every directed path

from v to a vertex w ∈ Nin(v) must pass through a vertex in Nout(v). But then

(v, u, w, v) is a directed cycles of length 3.

(2) Let C(v1, v2, . . . , vk, v1) be a directed cycle of length k in D, for some k (3 ≤ k ≤

n− 1).

We make two cases and in each case construct a directed (k + 1)-cycle.

Case 1: There is a vertex u ∈ D − V (C) such that (vi, u) and (u, vj) are arcs in D

for some i and j; without loss of generality, let (v1, u) ∈ A(D).

C

>
<

>

<

<>

<

>
<

>

vkvk−1

v2

v1

vp−1

vp

u

Figure 11.20: An extension of a k-cycle to a (k + 1)-cycle.

Let p (2 ≤ p ≤ k) be the smallest integer such that (u, vp) ∈ A(D). So,

(vp−1, u) ∈ A. Then

(v1, v2, . . . , vp−1, u, vp, vp+1, . . . , vk, v1)

is directed cycle of length (k + 1) in D; see Figure 11.20.

If the assumption made in Case 1 does not hold, then the following must hold.

Case 2: If u ∈ D − V (C), then one of the following holds.

(a) (u, vi) ∈ A(D), for every i, 1 ≤ i ≤ k,

(b) (vi, u) ∈ A(D), for every i, 1 ≤ i ≤ k.
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Define

X = {u ∈ D − V (C); (vi, u) ∈ A(D), for every i, 1 ≤ i ≤ k}, and

Y = {w ∈ D − V (C); (w, vi) ∈ A(D), for every i, 1 ≤ i ≤ k}.

Since D is strong and since for every u ∈ D − V (C) either (a) or (b) holds, it

follows that X 6= ∅, Y 6= ∅, X ∩ Y = φ and X ∪ Y = V (D)− V (C).

C

>

<

<
>

>

<
X

Y

w<

u

<

>

...

...

vk

v2

v1

v3

Figure 11.21

There are vertices u ∈ X and w ∈ Y such that (u,w) is an arc in D, because

every directed path from a vertex in C to a vertex in Y must pass through a vertex

in X. Now, since u ∈ X and w ∈ Y , (v1, u) and (w, v3) are arcs in D. But then

(v1, u, w, v3, v4, . . . , vk, v1) a directed cycle of length k + 1 in D.

Corollary. A tournament is strong if and only if it contains a directed Hamilton

cycle.

Proof. A consequence of Theorems 11.2 and 11.10.
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Exercises

1. Draw all the non-isomorphic strong simple digraphs on 4 vertices and 5 arcs.

2. If D is a digraph in which every vertex has out-degree 1, then show that D has
exactly one directed cycle.

3. Draw (as many as you can) simple non-isomorphic digraphs on 7 vertices in
which every vertex has out-degree 1 and every vertex has in-degree 1. (Do you
recognize any relation on such digraphs and partition of 7?).

4. Let G be a k-regular graph on vertices v1, v2, . . . , vn and let D be an orientation

of G. Show that
n∑

i=1

(outdeg(vi))
2 =

n∑
i=1

(indeg(vi))
2.

5. A simple digraph D is called k-regular if outdeg(v) = indeg(v) = k, for every
vertex v ∈ V (D).

(a) Draw a 2-regular digraph on 5 vertices.

(b) Let k and n be integers such that 0 ≤ k < n. Describe a construction to
obtain a k-regular digraph on n vertices.

6. Prove or disprove: For every n ≥ 1, there is a simple digraph on n vertices in
which every vertex has odd out-degree.

7. (a) Construct pairs (D1, D2) of simple digraphs on n vertices for n = 2, 3, 4
where V (D1) = {u1, u2, . . . , un} and V (D2) = {v1, v2, . . . , vn} such that

i. D1 6' D2.

ii. D1 − ui ' D2 − vi, i = 1, 2, . . . , n.

(b) Verify that the digraphs D1 and D2 shown below have the properties (i)
and (ii) stated above.

8. If D is a weakly connected digraph, then show that m ≥ n− 1.

9. If D is a digraph with m ≥ (n − 1)(n − 2) + 1, then show that D is weakly
connected.

10. If D is a strongly connected simple digraph, then show that n ≤ m ≤ n(n− 1).

11. If D is a simple digraph with m ≥ (n − 1)2 + 1, then show that D is strongly
connected.
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Figure 11.22

12. Give an example of a simple digraph with the following properties:

(a) m = (n− 1)(n− 2), which is disconnected;

(b) m = n, which is strongly connected;

(c) m = n− 1, which is weakly connected;

(d) m = n− 1, which is unilaterally connected;

(e) m = (n− 1)2, which is not strongly connected.

In view of the existence of these examples, discuss the merits of the bounds
stated in Exercises 8 to 11.

13. Show that a digraph is strong if and only if its converse digraph is strong.

(The converse digraph
←
D of D has vertex set V (

←
D) = V (D). (u, v) ∈ A(

←
D)

iff (v, u) ∈ A(D).)

14. Use the proof of Theorem 11.5 to give a strong orientation to the following
graphs.

Figure 11.23

15. If D is a weakly connected simple digraph such that D − v is strong for some
vertex v ∈ V (D), then show that D is unilaterally connected.
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16. The adjacency matrix M = [aij] of a digraph D on n vertices v1, v2, . . . , vn is
a n × n matrix where aij = 1 if (vi, vj) is an arc in D and aij = 0, otherwise.
Show that

(a)
∑n

j=1 aij = outdeg(vi), t = 1, 2, . . . , n;

(b)
∑n

j=1 aij = indeg(vi), t = 1, 2, . . . , n;

(c) The (i, j)-th entry [Mp]ij in Mp is the number of directed walks of length
p from vi to vj.

17. Every graph G has an orientation D such that |outdeg(v) − indeg(v)| ≤ 1, for
every vertex v.

18. Let D be a digraph and let r = max
v∈V
{outdeg(v), indeg(v)}. Prove that there is

an r-regular digraph H such that D is a subdigraph of H.

19. Prove that there exist regular tournaments of every odd order but there are no
regular tournaments of even order.

20. Show that in a tournament there is at most one vertex of out-degree zero and
at most one vertex of in-degree zero.

21. Let D be a strong tournament. Given any k, 1 ≤ k ≤ n − 3, show that there
exists a set S ⊆ V (D) of k vertices such that D − S is strongly connected.

22. (a) Draw a tournament on 5 vertices in which every vertex has the same out-
degree.

(b) If a tournament has n vertices and every vertex has out-degree d, find d.

23. Draw:

(a) A unilaterally connected (but not strongly connected) tournament on 5
vertices.

(b) A strongly connected tournament on 5 vertices.
Justify that your tournaments indeed have the required properties.

24. Show that a tournament D is not strongly connected if and only if there is a
partition of V (D) into two subsets A and B such that every arc in between A
and B is of the form (u, v), where u ∈ A and v ∈ B.
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25. A tournament D is called a transitive tournament if (u,w) ∈ A(D) whenever
(u, v) and (v, w) ∈ A(D). Show that a tournament is transitive if and only
if the vertices of D can be ordered v1, v2, . . . , vn such that outdeg(v1) = 0,
outdeg(v2) = 1, . . ., outdeg(vn) = n− 1.

26. Show that a tournament is transitive if and only if it does not contain any
directed cycle.

27. If T is a tournament on n vertices v1, v2, . . . , vn with outdeg(vi) = si, i =
1, 2, . . . , n then show that

(a)
∑n

i=1 si ≥
k(k − 1)

2
1 ≤ k < n.

(b)
∑n

i=1 si =
n(n− 1)

2
;

(c)
∑n

i=1 s
2
i =

∑n
i=1(n− 1− si)

2;

28. A vertex v in a tournament T is called a winner if every vertex can be reached
from v by a directed path of length ≤ 2. Show the following:

(a) No tournament has exactly two winners.

(b) For every n 6= 2, 4, there is a tournament of order n in which every vertex
is a winner.




