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INTRODUCTION : 

This topic is about a branch of discrete mathematics called graph theory. Discrete 

mathematics – the study of discrete structure (usually finite collections) and their 

properties include combinatorics (the study of combination and enumeration of objects) 

algorithms for computing properties of collections of objects, and graph theory (the study 

of objects and their relations). 

Many problem in discrete mathematics can be stated and solved using graph 

theory therefore graph theory is considered by many to be one of the most important and 

vibrant fields within discrete mathematics.  

Many problem in discrete mathematics can be stated and solved using graph theory 

therefore graph theory is considered by many to be one of the most important and vibrant 

fields within discrete mathematics.  

DISCOVERY 

It is no coincidence that graph theory has been independently discovered many 

times, since it may quite properly be regarded as an area of applied mathematics .Indeed 

the earliest recorded mention of the subject occurs in the works of Euler, and although the 

original problem he was considering might be regarded as a some what frivolous puzzle, 

it did arise from the physical world.  

Kirchhoff’s investigations of electric network led to his development of the basic 

concepts and theorems concerning trees in graphs. While Cayley considered trees arising 

from the enumeration of organic chemical isomer’s. Another puzzle approach to graphs 

was proposed by Hamilton. After this, the celebrated four color conjecture came into 

prominence and has been notorious ever since. In the present century, there have already 

been a great many rediscoveries of graph theory which we can only mention most briefly 

in this chronological account. 

WHY STUDY GRAPH? 

The best way to illustrate the utility of graphs is via a “cook’s tour” of several 

simple problem that can be stated and solved via graph theory. Graph theory has many 

practical applications in various disciplines including, to name a few, biology, computer 

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com



3 

science, economics, engineering, informatics, linguistics, mathematics, medicine, and 

social science, (As will become evident after reading this chapter) graphs are excellent 

modeling tools, we now look at several classic problems. 

We begin with the bridges of Konigsberg. This problem has a historical 

significance, as it was the first problem to be stated and then solved using what is now 

known as graph theory. Leonard euler fathered graph theory in 1973 when his general 

solution to such problems was published euler not only solved this particular problem but 

more importantly introduced the terminology for graph theory 

1.THE  KONIGSBERG  BRIDGE  PROBLEM 

Euler (1707-- 1782) became the father of graph theory as well as topology when 

in 1736 he settled a famous unsolved problem of his day called the Konigsberg bridge 

problem. The city of Konigsberg was located on the Pregel river in Prussia, the city 

occupied two island plus areas on both banks. These region were linked by seven bridges 

as shown in fig(1.1).  

The problem was to begin at any of the four land areas, walk across each bridge 

exactly once and return to the starting point one can easily try to solve this problem 

empirically but all attempts must be unsuccessful, for the tremendous contribution of 

Euler in this case was negative. 

In proving that the problem is unsolvable, Euler replaced each land area by a 

point and each bridge by a line joining the corresponding points these by producing a 

“graph” this graph is shown in fig(1.2) where the points are labeled to correspond to the 

four land areas of fig(1.1) showing that the problem is unsolvable is equivalent to 

showing that the graph of fig(1.2) cannot be traversed in a certain way. 

In proving that the problem is unsolvable, Euler replaced each land area by a point and 

each bridge by a line joining the corresponding points these by producing a “graph” this 

graph is shown in fig(1.2) where the points are labeled to correspond to the four land 

areas of fig(1.1) showing that the problem is unsolvable is equivalent to showing that the 

graph of fig(1.2) cannot be traversed in a certain way. 
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Figure1.1: A park in Konigsberg 1736 

 
 

 

 

 

Figure1.2: The Graph of the Konigsberg  bridge problem 

Rather than treating this specific situation, Euler generalized the problem and 

developed a criterion for a given graph to be so traversable; namely that it is connected 

and every point is incident with an even number of lines. While the graph in fig(1.2) is 

connected, not every point incident with an even number of lines. 

2.ELECTRIC  NETWORKS 

Kirchhoffs developed the theory of trees in 1847 in order to solve the system of 

simultaneous linear equations linear equations which gives the current in each branch and 

around each circuit of an electric network..  

Although a physicist he thought like a mathematician when he abstracted an 

electric network with its resistances, condensers, inductances, etc, and replaced it by its 

corresponding combinatorial structure consisting only of points and lines without any 

indication of the type of electrical element represented by individual lines. Thus, in 

effect, Kirchhoff replaced each electrical network by its underlying graph and showed 

that it is not necessary to consider every cycle in the graph of an electric network 

separating in order to solve the system of equation. 

Instead, he pointed out by a simple but powerful construction, which has since               

became std procedure, that the independent cycles of a graph determined by any of its 
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H1 H2

 
H3 

W E G 

“spanning trees” will suffice. A contrived electrical network N, its underlying graph G, 

and a spanning tree T are shown in fig(1.3) 

 
N: 

 

 

Fig (1.3)- A network N, its underlying graph G, and a spanning tree T 

 

 G: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.UTILITIES  PROBLEM 

These are three houses fig(1.4) H1, H2, and H3, each to be connected to each of the 

three utilities water(w), gas(G), and electricity(E)- by means of conduits, is it possible to 

make such connection without any  crossovers of the conduits?  

 

 

 

 

 

Fig(1.4)- three – utilities problem 

Fig(1.4) shows how this problem can be represented by a graph – the conduits are shown 

as edges while the houses and utility supply centers are vertices 
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4.SEATING  PROBLEM 

Nine members of a new club meet each day for lunch at a round table they decide 

to sit such that every members has different neighbors at each lunch  

 

 

 

 

 

Fig(1.5) – Arrangements at a dinner table 

How many days can this arrangement lost? 

This situation can be represented by a graph with nine vertices such that each 

vertex represent a member, and an edge joining two vertices represents the relationship of 

sitting next to each other. Fig(1.5) shows two possible seating arrangement – these are 1 

2 3 4 5 6 7 8 9 1 (solid lines), and 1 3 5 2 7 4 9 6 8 1 (dashed lines) it can be shown by 

graph – theoretic considerations that there are only two more arrangement possible. They 

are 1 5 7 3 9 2 8 4 6 1 and 1 7 9 5 8 3 6 2 4 1. In general it can be shown that for n people 

the number of such possible arrangements is (n-1)/2, if n is odd. (n-2)/2, if n is even  

WHAT IS A GRAPH? 

A linear graph (or simply a graph) G = (V,E) consists of a set of objects V = {v1, 

v2,…..} called vertices, and another set E = {e1, e2,…..} whose elements are called edges, 

such that each edge ek is identified with an unordered pair (vi , vj) of vertices. The 

vertices vi , vj  associated with edge ek  are called the end vertices of  ek . The most 

common representation of a graph is by means of a diagram, in which the vertices are 

represented as points and each edge as a line segment joining its end vertices 

The object shown in fig (a) 

The Object Shown in Fig.(a) 
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Fig (a) – Graph with five vertices and seven edges 

Observe that this definition permits an edge to be associated with a vertex pair (vi 

, vj) such an edge having the same vertex as both its end vertices is called a self-loop. 

Edge e1 in fig (a) is a self-loop. Also note that the definition allows more one edge 

associated with a given pair of vertices, for example, edges e4 and e5 in fig (a), such edges 

are referred to as ‘parallel edges’. A graph that has neither self-loops nor parallel edges 

is called a ‘simple graph’.  

FINITE   AND  INFINITE  GRAPHS 

Although in our definition of a graph neither the vertex set V nor the edge set E 

need be finite, in most of the theory and almost all application these sets are finite. A 

graph with a finite number of vertices as well as a finite number of edge is called a ‘finite 

graph’: otherwise it is an infinite graph. The graphs in fig (a), (1.2), are all examples of 

finite graphs. Portions of two infinite graphs are shown below 

 

 

 

 

 

Fig(1.6) – Portion of two infinite graphs 

INCIDENCE  AND  DEGREE 

When a vertex vi  is an end vertex of same edge ej , vi  and ej are said to be 

incident with (on or to) each other. In fig (a), for examples, edges e2, e6 and e7 are 

incident with vertex v4. Two nonparallel edges are said to be adjacent if there are incident 

on a common vertex. For example, e2 and e7 in fig (a) are adjacent. Similarly, two 

V1 

 
V2 

 

e1 

 

e2 

 

e7 

 

e4 

 

e3 

 

V3 

 
V4 

V5 

 

e6 

 

e5 
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vertices are said to be adjacent if they are the end vertices of the same edge in fig (a), v4 

and v5 are adjacent, but v1 and v4 are not. 

The number of edges incident on a vertex vi , with self-loops counted twice, is 

called the degree, d (vi), of vertex vi , in fig (a) for example d(v1) = d(v2) = d(v3) = 3, 

d(v2) = 4 and d(v5) = 1. The degree of a vertex is same times also referred to as its 

valency. 

Let us now considered a graph G with e edges and n vertices v1, v2 ,…..vn  since 

each edge contributes two degrees 

The sum of the degrees of all vertices in G is twice the number of edges in G that is  

 

 

       

Taking fig (a) as an example, once more d(v1) + d(v2) + d(v3) + d(v4) + d(v5) = 3 

+ 4 + 3 + 3 + 1 = 14 = twice the number of edges. 

From equation (1.1) we shall derive the following interesting result. 

THEOREM  1.1 

“The number of vertices of odd degree in a graph is always even”. 

Proof : If we consider the vertices with odd and even degree separately, the 

quantity in the left side of equation (1.1) can be expressed as the sum of two sum, each 

taken over vertices of even and odd degree respectively, as follows. 

 

 

 

Since the left hand side in equation (1.2) is even, and the first expression on the 

right hand side is even (being a sum of even numbers), the second expression must also 

be even 

 

 

 

Because in equation (1.3) each d(vk) is odd, the total number of terms in the sum 

must be even to make the sum an even number. Hence the theorem. 

1

( ) 2 (1.1)
n

i
i

d v e
=

= − − − −�

1

( ) ( ) ( ) (1.2)
n

i k
i even odd

d v d vj d v
=

= + − − −� � �

( ) (1.3)k
odd

d v an even number= − − − − − −�
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A graph in which all vertices are of equal degree is called a ‘regular graph’ (or 

simply a regular). 

DEFINITION:  

ISOLATED   VERTEX , PENDANT  VERTEX  AND  NULL GRAPH  

 

 

 

 

 

 

Fig(1.7) –  Graph containing isolated vertices, series edges, and a pendent vertex. 

A vertex having no incident edge is called an ‘isolated vertex’. In other words, 

isolated vertices are vertices with zero degree. Vertices v4 and v7 in fig(1.7), for example, 

are isolated vertices a vertex of degree one is called a pendent vertex or an end vertex v3 

in fig(1.7) is a pendent vertex. Two adjacent edges are said to be in series if their 

common vertex is of degree two in fig(1.7), the two edges incident on v1 are in series. 

In the definition of a graph G = (V,E), it is possible for the edge set E to be 

empty. Such a graph , without any edges is called a ‘null graph’. In other words, every 

vertex in a null graph is an isolated vertex. A null graph of six vertices is shown in fig 

(1.8). Although the edge set E may empty the vertex set V must not be empty; otherwise 

there is no graph. In other words, by definition, a graph must have atleast one vertex  

 

 

 

 

Fig 1.8: Null graph of Six Vertices 

V3

V1

V4V2 V5

V6

 
� 

� � 

� 

� 

� � 

V1 
V7 

V6 

V5 

V4 

V3 
V2 
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A BRIEF HISTORY OF GRAPH THEORY 

As mentioned before, graph theory was born in 1736 with Euler’s paper in which 

he solved Konigsberg bridge problem. For the next 100 years nothing more was done in 

the field. 

In 1847,G.R.Kirchhoff (1824-1887) developed the theory of trees for their 

applications in Electrical  network. Ten years later, A. Cayley (1821-1895) discovered 

trees while he was trying to enumerate the isomers of saturated hydrocarbons CnH2n+2. 

About the time of Kirchhoff and Cayley,two other milestones in graph theory 

were laid. One was the four-color conjecture, which states that four colors are sufficient 

for coloring any atlas(a map on a plane)such that the countries with common boundaries 

have different colors. 

It is believed that A.F. Mobius (1790-1868) first presented four-color problem in 

one of his lectures in 1840.  

About 10 years later A.De Morgan( 1806-1871) discussed this problem with his 

fellow mathematicians  in London.De Morgan’s letter is the first authenticated reference 

to the four-color problem.The problem became well known after Cayley published it in 

1879 in the first volume of the Proceedings of the Royal Geographic Society .To this 

day ,the four-color conjecture is by  far the most famous unsolved problem in Graph 

theory. It has stimulated an enormous of research in the field. 

The other milestone is due to Sir W.R. Hamilton (1805-1865). In the year 1859,he 

invented a puzzle and sold it for 25 guineas to a game manufacturer in Dublin. The 

puzzle consisted of a wooden ,regular Dodecahedron (A polyhedron with 12 faces and 20 

corners, each face being a regular pentagon  and three edges meeting at each corner). The 

corners were marked with the names of 20 important cities; London, Newyork, Delhi, 

Paris and so on .The object in the puzzle was to find a route along the edges of the 

Dodecahedron, passing through each of the 20 cities exactly once.  

Although the solution of this specific problem is easy to obtain, to date no one has 

found a necessary and sufficient condition for the existence of such a route (called 

Hamiltonian circuit) in an arbitrary graph.  

This fertile period was followed by half a century of relative inactivity. Then a 

resurgence of interest in graphs started during the 1920’s.One  of the pioneers in this 
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period was D. Konig. He organized the work of other mathematicians and his own and 

wrote the first book on the subject which was published in 1936. 

The past 30 years has been a period of intense activity in graph theory both pure 

and applied. A great deal of research has been done and is being done in this area. 

Thousands of papers have been published and more than hundred of books written during 

the past decade. Among the current leaders in the field are Claude Berg, Oystein 

Ore, Paul Erdos, William Tutte and Frank Harary.  

DIRECTED GRAPHS AND GRAPHS:  

DIRECTED GRAPHS : 

Look at the diagram shown below. This diagram consists of four vertices A,B,C,D 

and three edges AB,CD,CA with directions attached to them .The directions being 

indicated by arrows. 

    

 

 

  

 

Fig. 1.1  

Because of attaching directions to the edges, the edge AB has to be interpreted as 

an edge from the vertex A to the vertex B and it cannot be written as BA. Similarly the 

edge CD is from C to D and cannot be written as DC and the edge  CA is from C to A 

and cannot be written as AC .Thus here the edges AB, CD, CA are directed edges. 

The directed edge AB is determined by the vertices A and B in that order and may 

therefore be represented by the ordered pair (A,B). similarly, the directed edge CD and 

CA may be represented by the ordered pair(C,D) and (C,A) respectively. Thus the 

diagram in fig(1.1) consists of a nonempty set of vertices, namely {A,B,C,D} and a set of 

directed edges represented by ordered pairs 

{(A,B),(C,D),(C,A) }.Such a diagram is called a diagram of a directed graph. 

 

 

 

> 

>  
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DEFINITION OF A DIRECTED GRAPH : 

A directed graph (or digraph) is a pair (V,E), where V is a non empty set and E is 

a set of ordered pairs of elements taken from the set V. 

For a directed graph (V, E), the elements of V are called Vertices (points or 

nodes) and the elements of E are called “Directed Edges”. The set V is called the vertex 

set and the set E is called the directed edge set 

The directed graph (V,E) is also denoted 

by D=(V,E) or D =D(V,E). 

The geometrical figure that depicts a directed graph for which the vertex set is 

V={A,B,C,D} and the edge set is   

E={AB,CD,CA}={(A,B),(C,D),(C,A)} 

 

 

 

 

Fig. 1.2 

Fig(1.2) depicts the directed graph for which the  

vertex set is V={A,B,C,D} and the edge set is  

E={AB,CD,AC}={(A,B),(C,D),(A,C)}.   

It has to be mentioned that in a diagram of a directed graph the directed edges 

need not be straight line segments, they can be curve lines (arcs )Also.  

For example, a directed edge AB of a directed graph can be represented  by an 

arbitrary arc drawn from the vertex A to the vertex B as shown in fig(1.3). 

 
   Fig.1.3 

In fig (1.1) every directed edge of a digraph (directed graph) is determined by two 

vertices of the diagraph- a vertex from which it begins and a vertex at which it ends. Thus 
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,if AB is a directed edge of a digraph D. Then it is understood that this directed edge 

begins at the vertex A of D and terminates at the vertex B of D. Here we say that A is the 

initial vertex and B is the terminal vertex  of AB. 

 

It should  be mentioned that for a directed edge (in a digraph) the initial vertex 

and the terminal vertex need not be different. A directed edge beginning and ending at the 

same vertex A is denoted by AA or (A,A) and is called directed loop.  The directed edge 

shown in Fig.(1.4) is a directed loop which begins and ends at the vertex A. 

 

 

 

 

 

 

 

 

             Fig. 1.4 

A digraph can have more than one directed edge having the same initial vertex 

and the same terminal vertex. Two directed edges having the same initial vertex and the 

same terminal vertex are called parallel directed edges. 

Two parallel directed edges are shown in fig(1.5)(a). 

 
Fig. 1.5(a) 

 

 

 

 

Fig. 1.5(b) 

> 

> 

> 
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Two or more directed edges having the same initial vertex and the same terminal 

vertex are called “multiple directed edges”. Three multiple edges are shown in 

fig(1.5)(b). 

IN- DEGREE AND OUT –DEGREE 

If V is the vertex of a digraph D, the number of edges for which V is the initial 

vertex is called the outgoing degree or the out degree of V and the number of edges for 

which V is the terminal vertex is called the incoming degree or the in degree of V. The 

out degree of V is denoted by d+ (v) or o d (v) and the in degree of V is denoted by d- (v) 

or i d (v). 

It follows that 

i. d+ (v) =0, if V is a sink 

ii. d- (v) =0, if V is a source 

iii. d+ (v) = d- (v) = 0, if V is an isolated vertex. 

For the digraph shown in fig(1.6) the out degrees and the in degrees of the vertices 

are as given below 

 
d+ (v1) =  2                                d- (V1) = 1            

d+ (v2) =  1                                   d- (v2) = 3            

d+ (v3) =  1                                   d- (v3) = 2                    

d+ (v4) =  0                                   d- (v4) = 0            

d+ (v5) =  2                                   d- (v5) = 1            

d+ (v6) =  2                                   d- (v6) = 1     

We note that ,in the above digraph, there is a directed loop at the vertex  v3 and 

this loop contributes a count 1 to each of  d+ (v3)  and  d- (v3) . 

We  further observe that the above digraph has 6 vertices and 8 edges and the 

sums of the out-degrees and in-degrees of its vertices are 

 

V1 

V4 

6 6

1 1

( ) 8, ( ) 8j i
i i

d v d v+ −

= =
= =� �

V2 

V6 V5 

V3 
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Example 1: Find the in- degrees and the out-degrees of the vertices of the digraph shown 

in fig (1.8) 

 

 

 
        Fig. (1.8) 

SOLUTION: 

The given digraph has 7 vertices and 12 directed edges. The  out-degree of a 

vertex is got by counting the number of edges that  go out of the vertex and the in-degree 

of a  vertex is got by counting the number of edges that  end at the vertex. Thus we obtain 

the following data  

 

Vertex V1 V2 V3 V4 V5 V6 V7 

Out-degree 4 2 2 1 3 0 0 

In-degree 0 1 2 2 1 2 4 

 

This table gives the out-degrees and in-degrees of all the vertices. We note that v1 is a 

source and   v6  and v7  are sinks. 

We also check that sum of out-degrees = sum of in – degrees = 12 = No of edges. 

Example 2:Write down the vertex set and the directed edge set of each of the following 

digraphs. 

V7 

V1 V2 

V6 

V5 

V3 

V4 
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(i) 

 

                Fig.1.9  

 

 
Fig. (ii)  

Solution of graph (i) & (ii): 

i) This is a digraph whose vertex set is  

V={A,B,C} and the directed edge set  

E={(B,A),(C,A),(C,A),(C,B),(C,B)}. 

ii) This is a digraph whose vertex set is  

V={V1,V2,V3, V4} and the directed edge set  

E={( V1,V2),( V1,V3),( V1,V3), 

( V2,V3),( V3,V2) ),( V3,V4) ,(V4,V4)}. 

Example 3: For the digraph shown in fig, determine the out-degrees and in-degrees of all 

the vertices  

 
Solution: d- (V1) =0, d- (v2) = 3,d- (v3) =0, d- (v4) = 0,d- (v5) = 1,d- (v6) = 1 

V3 

V4 

V3 

V1 V2 

V1 V2 

V6 V5 V4 
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   d+ (v1) = 2 ,d+ (v2) = 0, d+ (v3) = 1,d+ (v4) = 0 ,d+ (v5) =  1, d+ (v6) = 1  

Example 4: Let D be the digraph whose vertex set  

V={V1,V2,V3, V4 ,V5 } and  the directed edge set is  

E ={( V1,V4),( V2,V3), (V3,V5),(V4,V2),(V4,V4),(V4,V5),(V5,V1)}. 

   Write down a diagram of D and indicate the out-degrees and in-degrees of all the 

vertices  

 
 

vertices V1 V2 V3 V4 V5 

D+ 1 1 1 3 1 

d- 1 1 1 2 2 

 

DEFINITION : 

SIMPLE GRAPH : 

A graph which does not contain loops and multiple edges is called simple graph. 

 

 
Fig. Simple Graph 

LOOP FREE GRAPH.  

    A graph which does not contain loop is called loop free graph.  

 

V1 

V2 

V5 

V4 

V3 
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MULTIGRAPH 

     A graph which contain multiple edges but no loops is called multigraph. 

 
Fig. Multigraph 

 

GENERAL GRAPH  

A graph which contains multiple edges or loops (or both) is called general graph. 

 

 
                 Fig. General Graph 

COMPLETE GRAPH : 

A simple graph of order  � 2 in which there is an edge between every pair of 

vertices is called a complete graph (or a full graph). 

In other words a complete graph is a simple graph in which every pair of distinct 

vertices are adjacent. 

    A complete graph with  n  � 2 vertices is denoted by Kn .  

 

A complete graph with   2,3,4,5 vertices are shown in fig (1.9)(a) to (1.9)(d) 

respectively. Of these complete graphs ,the complete graph with 5 vertices namely  

K5(shown in fig.1.9 (d),is of great importance. This graph is called the Kuratowski’s first 

graph 

 

 

�
V1 V2 

V4 

V3 

e1 

e5 

e2 e3 

e6 e4 
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Fig.(1.9) 

 
           (a) : K2          (b) : K3                                    (c) : K4                    (d) : K5 

BIPARTITE GRAPH 

Suppose a simple graph G is such that its vertex set V is the union of two of its 

mutually disjoint non-empty subsets V1 and V2 which are such that each edge in G joins a 

vertex inV1 and a vertex inV2.Then G is called a bipartite graph. If E is the edge set of 

this graph, the graph is denoted by G = (V1, V2: E), or G = G(V1, V2: E). The sets V1and 

V2 are called bipartites (or partitions) of the vertex set V. 

 

 
Fig. (1.10) 

For example, consider the graph G in fig(1.10) for which the vertex set is 

V={A,B,C,P,Q,R,S} and the edge set is  

E= {AP,AQ,AR,BR,CQ,CS}. Note that the set V is the union of two of its subsets V1={ 

A,B,C} and V2={P,Q,R,S} which are such that  

i)  V1 and V2 are disjoint.  

ii)  Every edge in G joins a vertex in V1 and a vertex      in V2.  

iii) G contains no edge that joins two vertices both of which are in V1 or V2. This 

graph is a bipartite graph with V1={ A,B,C} and V2={P,Q,R,S} as bipartites. 

COMPLETE BIPARTITE GRAPH 

A bipartite graph G= {V1, V2 ; E} is called a complete bipartite graph, if there is 

an edge between every vertex in V1 and every vertex in V2 . 
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The bipartite graph shown in fig (1.10) is not a complete bipartite graph. Observe 

for example that the graph does not contain an edge joining A and S. 

A complete bipartite graph G={ V1, V2 ; E} in which the bipartites V1and V2 

contain r and s vertices respectively, with r ≤ s is denoted by Kr,s .In this graph each of r 

vertices in V= is joined to each of s vertices in V2 .Thus Kr,s has r+ s vertices and rs 

edges. That is Kr,s is of order r+s and size rs. It is therefore a (r+ s,rs) graph 

 

 

 

 

 

(a) K1,3  (b) K1,5                   (c) K2,3             (d) K3,3  

Fig. 1.11 

 

Fig 1.11 (a) to (d) depict some bipartite graphs. Observe that in  fig 1.11(a),the 

bipartites are V1={ A } and V2={P,Q,R}; the vertex A is joined to each of the vertices 

P,Q,R by an edge. In fig 1.11(b) ,the bipartites are V1={A} and 

V2={M,N,P,Q,R}; the vertex A is joined to each of the vertices M,N,P,Q,R by an 

edge. In fig 1.11(c) ,the bipartites are V1={ A,B } and V2={ P,Q,R}; each of the vertices 

A and B is joined to each of the vertices P,Q,R by an edge. In fig 1.11(d),the bipartites 

are V1={ A,B,C } and V2={P,Q,R}; each of the vertices A,B,C is joined to each of the 

vertices P,Q,R. Of these complete bipartite graph the graph K3,3 shown in fig 1.11(d),is of 

great importance. This is known as Kuratowski’s second graph. 

Example 1. Draw a diagram of the graph G = (V,E) in each of the following cases. 

a) V= { A,B,C,D} ,E={AB,AC,AD,CD} 

b) V={V1,V2,V3, V4 ,V5 }, 

    E={V1V2 ,V1V3,V2V3,V4V5}. 

c) V= {P,Q,R,S,T} ,E={PS,QR,QS} 

d) V={ V1,V2,V3, V4 ,V5,V6},  

    E={V1V4,V1V6,V4V6,V3V2,V3V5,V2V5} 
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 Solution :The required diagram are shown below 

 

 

 

 

 

 

 

 

 

 

 

Example 2: Which of the following is a complete graph? 

 

 

 

 

 

 

Solution: The first of the graph is not complete. It is not simple on the one hand 

and there is no edge between A and C on the other hand. The second of the graphs is 

complete. It is a simple graph and there is an edge between every pair of vertices.  

 

Example 3: Which of the following graphs is a simple graph? a multigraph ? a 

general graph ? 

 

 

 

 

 

 

(a) (b)

(i) (ii) (iii)

Fig: (b)Fig: (a)

Fig: (c ) Fig: (d)
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Solution:   (i) General Graph,  

  (ii) Simple Graph,  

    (iii) Multigraph 

Example 4: Identify the adjacent vertices and adjacent edges in the graph shown in 

Figure. 

 

 

 

 

 

 

 

Solution :  

Adjacent Vertices : V1 & V2, V1 & V3, V1 & V4,V2 & V4. 

Adjacent edges : e1 & e2, e1 & e3, e1 & e5, e1 & e6, e2 & e4, e2 & e5, e2 & e6, e3 & e5, e3 

and e6.  

VERTEX  DEGREE  AND  HANDSHAKING  PROPERTY : 

Let G = (V,E) be a graph and V be a vertex of G. Then the number of edges of G 

that are incident on V (that is, the number of edges that join V to other vertices of G) with 

the loops counted twice is called the degree of the vertex V and is denoted by deg(v) or 

d(V). 

The degree of the vertices of a graph arranged in non-decreasing order is called 

the degree sequence of the graph. Also, the minimum of the degree of a graph is called 

the degree of the graph 
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Figure (1.12)
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For example, the degrees of vertices of the graph shown in fig are as given below  

d(V1) = 3, d(V2) = 4, d(V3) = 4, d(V4) = 3 

Therefore,the degree sequence of the graph is 3,3,4,4 and the degree of the graph is 3. 

Regular Graph  : A graph in which all the vertices are of the same degree K is called 

a regular graph of degree K, or a K- regular graph.In particular, a 3-regular graph is 

called a cubic graph. 

The graph shown in figures 1.13 (a) and (b) are 2- regular and 4 - regular graph 

respectively. 

 

 

 

 

 

 

 

The graph shown in fig1.13 (c) is a 3-regular graph (cubic graph). This particular 

cubic graph, which contains 10 vertices and 15 edges, is called the Peterson Graph.  

 

 

 

 

 

The graph shown in fig (d) is a cubic graph with 8 = 23  vertices. This particular graph 

is called the three dimentional hyper cube and is denoted by Q3. 

 

Figure: 1.13

(a) (b)

Figure ( c ) Figure ( d )www.a
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Handshaking property : 

Let us refer back to degree of the graph shown in fig 1.14. we have, in this graph, 

 

 

 

 

 

 

 

d(V1) = 3, d(V2) = 4, d(V3) = 4, d(V4) = 3 

Also,the graph has 7 edges, we observe that deg (V1) + deg (V2) + deg (V3) + deg 

(V4) = 14 = 2 x 7  

Property:  The sum of the degrees of all the vertices in a graph is an even number, and 

this number is equal to twice the number of edges in the graph.  

In an alternative form, this property reads as follows:  

For a graph G = (V,E) 

 

This property is obvious from the fact that while counting the degree of vertices, each 

edge is counted twice (once at each end). 

The aforesaid property is popularly called the ‘handshaking property’ 

Because, it essentially states that if several people shake hands, then the total number of 

hands shaken must be even, because just two hands are involved in each hand shake. 

Theorem : In every graph the number of vertices of odd degrees is even 

Proof : Consider a graph with n vertices. Suppose K of these vertices are of odd 

degree so that the remaining n-k vertices are of even degree. Denote the vertices with odd 

degree by V1,V2,V3,…….,Vk  and the vertices with even degree by Vk+1,Vk+2,…..,vn  then 

the sum of the degrees of vertices is 

 

 

 
( ) ( ) ( )

1 1 1

deg deg deg (1)
n k n

i i i
i i i k

v v v
= = = +

= + − − − −� � �

��

� ���

����

� ���

��

fig (1.14) 

��     
deg��(v)=2|E| 
v�V 
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In view of the hand shaking property, the sum on the left hand side of the above 

expression is equal to twice the number of edges in the graph. As such, this sum is even. 

Further, the second sum in the right hand side is the sum of the degrees of the vertices 

with even degrees. As such this sum is also even. Therefore, the first sum in the right 

hand side must be even;     that is,  

deg(V1) + deg(V2) + -- + deg (Vk) = Even—(ii) 

But, each of deg(V1), deg(V2),…….,deg (Vk) is odd. Therefore, the number of terms in 

the left hand side of (ii) must be even; that is, K is even  

Example : For the graph shown in fig 1.15 indicating the degree of each vertex 

and verify the handshaking property 

 

 

 

 

 

 

 

Solution : By examining the graph, we find that the degrees of its vertices are as 

given below: 

deg (a) = 3, deg (b) = 2, deg (c) = 4, deg (d) = 2, deg(e) = 0, deg (f) = 2, deg (g) = 2, 

deg (h) = 1. 

We note that e is an isolated vertex and h is a pendant vertex.  

Further, we observe that the sum of the degrees of vertices is equal to 16. Also, the 

graph has 8 edges. Thus, the sum of the degrees of vertices is equal to twice the 

number of edges.  

This verifies the handshaking property for the given graph. 

Example : For a graph with n-vertices and m edges, if � is the minimum and � is the 

maximum of the degrees of vertices, show that  

Solution : Let d1, d2,….,dn, be the degrees of the vertices. Then, by handshaking 

property, we have d1 + d2 + d3 + ----- + dn = 2m ---------(i) 

Since � = min(d1, d2,….,dn), we have  d1 � � ,  

2m
n

δ ≤ ≤ ∆

Fig (1.15) 

b 

d 

c 
f 

g 
h 

a 

e 
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d2 � � ,……., dn� � . 

Adding these n inequalities, we get   

d1 + d2 + ---- + dn  � n � ------(ii) 

Similarly, since  ∆ = max (d1, d2,….,dn), we get   

d1 + d2 + ---- + dn  ≤ n∆  ----(iii) 

From (i), (ii) and (iii), we get 2m� n � and 2m ≤ n∆   , so that n � ≤ 2m ≤n∆,  

or   

 

 

SUBGRAPHS 

 

 

 

 

 

 

Fig. (1.6) 

Given two graphs G and G1, we say that G1 is a subgraph of G if the following 

conditions hold: 

(1). All the vertices and all the edges of G1 are in G. 

(2). Each edges of G1 has the same end vertices in G as in G1. 

Essentially, a subgraph is a graph which is a part of another graph. Any graph 

isomorphic to a subgraph of a graph G is also referred to as a subgraph of G. 

Consider the two graphs G1 and G shown in figures 1.16(a) and 1.16(b) 

respectively, we observe that all vertices and all edges of the graph G1 are in the graphs G 

and that every edge in G1 has same end vertices in G as in G1.Therefore G1 is a subgraph 

of G .In the diagram of G ,the part G1 is shown in thick lines. 

The following observation can be made immediately. 

i) Every graph is a sub-graph of itself. 

ii) Every simple graph of n vertices is a subgraph of the complete graph Kn. 

2 m
n

δ ≤ ≤ ∆

  (a) : G1                    
(b) : G 
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iii) If G1 is a subgraph of a graph G2 and G2 is a subgraph of a graph G,then G1 is 

a subgraph of a graph G. 

iv) A single vertex in a graph G  is a subgraph of a graph G. 

v) A single edge in a graph G together with its end vertices,is a subgraph of G 

SPANNING SUBGRAPH : 

Given a graph G=(V, E), if there is a subgraph G1=(V1,E1) of G such that V1=V then 

G1 is called a spanning subgraph of G. 

In other words , a subgraph   G1  of  a graph G is  a spanning subgraph of G whenever 

the vertex set of G1 contains all vertices of G. Thus a graph and all its spanning 

subgraphs have the same vertex set. Obviously every graph is its own spanning 

subgraph.  

 

 

 

 

 

 

 

 

For example, for the graph shown in fig1.17(a), the graph shown in fig 1.17(b) is 

a spanning subgraph where as the graph shown in fig1.17(c) is a subgraph but not a 

spanning subgraph 

INDUCED SUBGRAPH 

Given a graph G=(V,E), suppose there is a subgraph G1=(V1,E1) of G such that every 

edge {A,B} of G, where AB � V1 is an edge of G1 also .then G1 is called an induced 

subgraph of G (induced by V1) and is denoted by < V1 >. 

It follows that a subgraph G1=(V1,E1) of  a graph G=(V,E) is not an induced subgraph 

of G, if for some A,B � V1,there is an edge{A,B} which is in G but not in G1.  

For example, for the graph shown in the figure 1.18 (a), the graph shown in the figure 

1.18 (b), is an induced subgraph,  induced by the set of vertices V1= {v1,v2,v3,v5} 

where as the graph shown in the figure 1.18 (c) is not an induced subgraph  

Figure (1.17 ) 

(a) (b) ( c ) 
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EDGE-DISJOINT AND VERTEX-DISJOINT SUBGRAPHS 

Let G be a graph and G1 and G2 be two subgraphs of G. then  

G1 and G2 are said to be edge disjoint if they do not have any common edge. 

G1 and G2 are said to be vertex disjoint if they do not have any common edge and any 

common vertex. 

It is to be noted that edge disjoint subgraphs may have common vertices. 

Subgraphs that have no vertices in common cannot possibly have edges in common. 

For example ,for the graph shown in the figure 1.19 (a), the graph shown in the 

figure1.19 (b) and 1.19 (c) are edge disjoint but not vertex disjoint subgraphs. 

 

 

 

 

 

 

 

Example : For the graph shown in fig 1.20   ,find two edge-disjoint subgraphs and  

two vertex-disjoint subgraphs . 

 

 

 

 

 

 

Figure 1.18 (a, b & c) 
(a) (b) (c)

V2 V3

V4V5

V1 

(a) (b) (c)

Figure 1.19:

Figure 1.20
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Solution:for the given graph, two edge-disjoint subgraphs are shown in fig 1.21(a) 

and two vertex-disjoint subgraphs are shown in fig 1.21(b). 

      fig 1.21 

 

 

 

 

OPERATIONS ON GRAPHS 

Consider two graphs G1=(V1,E1) and G2=(V2,E2) then the graph whose vertex set is 

V1UV2 and edge set is E1UE2 is called the union of G1 and G2 and is denoted by G1UG2. 

Thus G1UG2=(V1UV2, E1UE2). 

Similarly, if V1�V2 	 φ,the graph whose vertex set is V1�V2 and the edge set E1�E2 is 

called intersection of  G1 and G2.It is denoted by G1�G2.Thus G1�G2=(V1�V2, E1�E2), 

if V1�V2 	 φ. 

Next suppose we consider the graph whose vertex set is V1UV2 and edge set is E1∆E2 

where E1∆E2 is the symmetric difference of E1 and E2.This graph is called the  ring sum 

of G1 and G2.It is denoted by G1∆G2. Thus G1∆G2 = (V1UV2, E1∆E2). 

For the two graphs G1 and G2 shown in figures 1.22 (a) and (b), their union ,intersection 

and ring sum are shown in figures 1.23 (a), (b) and (c) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 (a )                                                            (b)   

(a) : G1 (b) : G2

Fig 1.22

(a) G1U G 2

Fig 1.23 

(b) G1n G 2

v1 v2 v6 

v5 v4 v3 

v1 

v4 

v2 

v3 
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DECOMPOSITION 

We say that a graph G is decomposed (or partitioned) in to two subgraphs G1 & 

G2 if G1 Ù G2 = G & G1�G2 = null graph 

DELETION: 

If V is a vertex in a graph G, then G – V denotes the subgraph of G obtained by 

deleting V and all edges incident in V, from G this subgraph G-u, is refered to as vertex 

deleted subgraph of G. 

It should be noted that, the deletion of a vertex always results in the deletion of all 

edges incident on that vertex. 

 If e is an edge in a graph G, then G-e denotes the subgraph of G obtained by 

deleting e (but not its end vertices) from G. This subgraph, G-e, is referred to as edge – 

deleted subgraph of G. For the graph G shown in figure 1.24 (a), the subgraphs G-V and 

G-e are shown in figure 1.24 (b) and 1.24 (c) respectively. 

Fig 1.23: ( c ) G1∆ G2 

v3 v4 v5 

v1 v2 v6 
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COMPLEMENT OF A SUBGRAPH 

Given a graph G and a subgraph G1 of G ,the subgraph of G obtained by deleting 

from all the edges that belongs to G1 is called the complement of G1 in G;it is denoted by 

G-G1 or G1  

 In other words ,if E1 is the set of all edges of G1 then the complement of G1 in G 

is given by G1 = G-E1.We can  check that    G1=G∆G1.  

Figure 1.24 (a, b, c)

(a) : G
(b) : G-v

(c) : G-e
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For example : 

Consider the graph G shown in fig 1.25(a) .Let G1 be the subgraph of G shown by 

thick lines in this figure. The complement of G1 in G, namely G1, is as shown in fig 

1.25(b) 

 

 

 

 

 

 

 

 

COMPLEMENT OF A SIMPLE GRAPH 

Earlier we have noted that every simple graph of order n is a subgraph of the 

complete graph Kn .If G is a simple graph of order n ,then the complement of G in Kn is 

called the complement of G, it is denoted by G. 

Thus, the complement  G of a simple graph G with n vertices is that graph which 

is obtained by deleting those edges of  Kn which belongs to G. Thus G =Kn-G =Kn∆G.      

Evidently Kn, G and G have the same vertex set and two vertices are adjacent in G 

if and only if they are not adjacent in G. Obviously, G is also a simple graph and the 

complement of  G is G that is G = G 

In fig 1.26(a), the complete graph K4 is shown. A simple graph G of order 4 is 

shown in fig 1.26(b). The complement  G, of G is shown in fig 1.26(c). 

Observe that G, G & K4 have the same vertices and that the edges of  G are got by 

deleting those edges from K4 which belong to G. 

...

Fig. 1.25(a) Fig.1.25 (b)

 

.  

. .

.

. 

.

. 

. .
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In fig1.27(a) ,a graph of order 6 is shown as a subgraph of K6 ,the edges of G 

being shown in thick lines .Its complement G, is shown in fig1.27(b).The graph shown in 

fig1.27(b) is known as David Graph. 

Fig. 1.27 

 

 

 

 

 
           

          (a)            (b) 

 

Example 1.Show that the complement of a bipartite graph need not be a bipartite graph. 

Solution: Fig 1.28(a) shows a bipartite graph which is of order 5.The complement of this 

graph is shown in fig1.28(b),this is not a bipartite graph.  

 

   Fig. 1.28(a)         Fig. 1.28(b) 
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Fig. (a): K4 Fig. (b): G

Fig. (c): G

Figure 1.26 a, b & c
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V
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4 V5
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Example 2.Let G be a simple graph of order n.If the size of graph G is 56 and size of  is 

G 80.What is n? 

Solution:We know that G =Kn-G therefore 

Size of G = (Size of Kn)- (Size of G) 

Since size of Kn (ie the number of edges in Kn) is ½(n)(n-1),this yields  

80 =  ½ n(n-1) – 56 

or  n(n-1) = 160 + 112 = 272 = 17 x 16 

thus, n = 17, (that is, G is of order 17)  

Example 3: Find the union, intersection and the ring sum of the graph G1 and G2  shown 

below.  

Fig. 1.29(G)     Fig. 1.29(G) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

Solution : G 1 U G 2
Union :-

Intersection : - G 1 n G2

.
.

.

. 

. 

.

.

.

.

.

Ring Sum :- G 1 � G 2

.
.

. .

. ..
.

. .

. .
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Example 4: For the graph G shown below, find G-v and G-e . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5: Find the complement of each of the following simple graphs  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

..

..

..

..

Solution :

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

Fig. 1.31 

G-v G-e 

.

.

.

. . .

. .

. .

. .

.

.

.

.
.

.

.

.

.
.

Fig. 1.32

(a) (b) (c)

Fig 1.30 

. .
.

. .

V

e

. .
.

. .

V

e

Solution : 

.

.

.

.

.

. .

..

. .
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. 
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.

.

. 

.

.

Fig. 1.33 

(a) (b) (c) (d)
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Example 6: Find the complement of the complete bipartite graph K3,3 

Solution :  

 

 

 

 

 

 

 

WALKS  AND  THEIR  CLASSIFICATION  

WALK: 

Let G be a graph having atleast one edge. In G, consider a finite, alternating 

sequence of vertices and edges of the form vi  ej  vi+1  ej+1  vi+2,…..,ek vm  which begin and 

ends with vertices and which is such that each edge in the sequence is incident on the 

vertices preceding and following it in the sequence. Such a sequence is called a walk in 

G. In a walk, a vertex or an edge (or both) can appear more than once.  

The number of edges present in a walk is called its ‘length’.  

 

For example :  Consider the graph shown below; 

 

 

 

 

 

 

           Fig.1.35 
 

In this graph, 

i) The sequence v1e1 v2c2 v3,e8v6 is a walk of length 3 (because this walk contains 3 

edges; e1,e2,e8).  In this walk, no vertex and no edge is repeated. 
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.
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.
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.
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Fig. 1.34 
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ii) The sequence v1,e4 v5e3 v2c2v3e5 v5e6v4 is a walk of length 5.  In this walk, the 

vertex v5 is repeated; but no edge is repeated. 

iii) The sequence v1e1v2e3v5e3v2e2v3 is a walk of length 4.  In this walk, the edge e3 

is repeated and the vertex v2 is repeated 

A walk that begins and ends at the same vertex is called a closed walk. In other 

words, a closed walk is a walk in which the terminal vertices are coincident. 

 A walk which is not closed is called an open walk.  In other words, an open walk 

is a walk that begins and ends at two different vertices.  

For Example, in the graph shown in figure (1.35) v1e1v2c3v5e4v1 is a closed walk and 

v1e1v2e2v3e5v5 is our open walk. 

TRAIL  AND  CIRCUIT: 

In a walk, vertices and /or edges may appear more than once, if in an open walk 

no edge appears more than once, than the walk is called a trail.  A closed walk in which 

no edge appears more than once is called a circuit. 

For example:  In fig (1.35), the open walk v1e1v2e3v5e3v2e2v3 (shown separately in 

figure 1.36(a) is not a trail (because, in this walk, the edge e3 is repeated) where as 

 

 

 

 

 

 

 

 

 

 

 

 

.

V 2

e3

V1

V3

e2. 

.

.
e1

.

V 2

e3

V1

V3

e2. 

.

.
e1

.

V 2

e3

V1

V3

e2. 

.

.
e1

V 2

e3

V1

V3

e2. 

.

.
e1

e3

V1

V3

e2. 

.

.
e1

e3

V1

V3

e2. 

.

.
e1

V1

V3

e2. 

.

.
e1

.

. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2

.

. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2

.

. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2

.

. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2

.

. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2. .

.

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2

e3V1

V 2 V3

V5

e4

e6

e 5

.

e2

V1

V 2 V3

V5

e4

e6

e 5

.

e2

V1

V 2 V3

V5

e4

e6

e 5

.

e2

V1

V 2 V3

V5

e4

e6

e 5

.

e2

V1

V 2 V3

V5

e4

e6

e 5

.

e2

V1

V 2 V3

V5

e4

e6

e 5

.

e2

Fig. 1.36 (a) :Not a trail

Fig. 1.36 (b): trail
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The open walk v1e4v5e3v2v2v3e5v5e6v4 (shown separately in fig 1.36(b)  is trail. 

Also, in the same fig (ie., in fig1.35), the closed walk v1 e1v2 e3 v5 e3 v2 e2 

v3 e5 v5 e4 v1  (shown separately in fig  1.37(a) is not a circuit (because e3 is repeated) 

where as the closed walk v1e1v2e3v5e5v3e7v4e6v5e4v1 (shown separately in 

fig1.37(b)) is a circuit. 

 

 

 

 

 

 

 

PATH AND CYCLE: 

A trail in which no vertex appears more than once is called a path. 

A Circuit in which the terminal vertex does not appear as an internal vertex (also) and no 

internal vertex is repeated is called a ‘cycle’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.37(a)                  Fig. 1.37(b)         
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Fig. 1.38
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For example, in figure (1.35), the trail v1e1e3v5e5v3e7v4 (shown separately in fig 

1.38(a)) is a path whole as the trail v1e4v5e3v2e2e5v5e6v4 (shown separately in fig 

1.38(b) is not a path (because in this trail, v5 appears twice). 

 Also, in the same fig, the circuit v2e2v3e5v5e3v2 (shown separately in fig 

1.39(a)) is a cycle where as the circuit v2e1v1e4v5e5v3e7v4e6v5e3v2 (shown 

separately in fig 1.39(b) is not a cycle (because, in this circuit, v5 appears twice) 

The following facts are to be emphasized. 

1. A walk can be open or closed. In a walk (closed or open), a vertex and / or an 

edge can appear more than once. 

2. A trail is an open walk in which a vertex can appear more than once but an edge 

cannot appear more than once. 

3. A circuit is a closed walk in which a vertex can appear more than once but an 

edge cannot appear more than once. 

4. A path is an open walk in which neither a vertex nor an edge can appear more 

than  once.  Every path is a trail; but a trail need not be a path. 

5. A cycle is a closed walk in which neither a vertex nor an edge can appear  ore 

than once. 

Every cycle is  a circuit; but, a circuit need not be a cycle. 

Example: 

For the graph shown in figure1.40 indicate the nature of the following walks. 

v1e1v2e2v3e2v2 

v4e7v1e1v2e2v3e3v4e4v5 

v1e1v2e2v3e3v4e4v5 

v1e1v2e2v3e3v4e7v1 

v6e5v5e4v4e3v3e2v2e1v1e7v4e6v6 

 

 

 

Fig. 1.40
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V3V4V5

V6 e1

e2

e3e4
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Solution: 

1. Open walk which is not a trail the edge e2 is repeated. 

2. Trail which is not a path (the vertex v4 is repeated) 

3. Trail which is a path 

4. Closed walk which is a cycle. 

5. Closed walk which is a circuit but not a cycle (the vertex v4 is repeated) 

EULER CIRCUITS AND EULER TRAILS. 

Consider a connected graph G. If there is a circuit in G that contains all the edges 

of G. Than that circuit is called an Euler circuit (or Eulerian line, or Euler tour) in G.  If 

there is a trail in G that contains all the edges of G, than that trail is called an Euler trail. 

Recall that in a trail and a circuit no edge can appear more than once but a vertex 

can appear more than once.  This property is carried to Euler trails and Euler Circuits 

also. 

Since Euler circuits and Euler trails include all edge, then automatically should 

include all vertices as well. 

A connected graph that contains an Euler circuit is called a Semi Euler graph (or a Semi 

Eulerian graph). 

For Example, in the graph shown in figure 1.41 closed walk. 

Pe1Qe2Re3Pe4Se5Re6Te7P is an Euler circuit.  Therefore, this graph is a an Euler graph. 

 

 

 

 

 

 

 

Consider the graph shown in fig.1.41. We observe that, in this graph, every 

sequence of edges which starts and ends with the same vertex and which includes all 

edges will contain at least one repeated edge.  Thus, the graph has no Euler circuits.  

Hence this graph is not an Euler graph. 

Fig 1.41
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It may be seen that the trail Ae1Be2De3Ce4Ae5D in the graph in fig 1.42 is an 

Euler trail.  This graph therefore a Semi – Euler Graph. 

Example 1:  Show that the following graph contains an Euler Circuits  

 

 

 

 

 

             Fig.1.43 

Solution:  The graph containas an Euler Circuit PAQBRQP 

Example 2:  find an Euler circuit in the graph shown below. 

 

   Fig.1.44 

 

 

 

 

 

 

 

 

 
 
 

Fig. 1.42
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Solution:
V1V2V9V10V2V11V7V10 V11V6V4V2 V3V4 V5V 6V7V8 V9V1
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Example 3:  show that the following graph contains an Euler trail. 

 

                   Fig. (1.45) 

 

 

 

 

 

Solution:  the graph contains Pe1Te2Se3Pe4Qe5Se6Re7Qas an Euler trail. 

ISOMORPHISM : 

Consider two graphs G = ( V, E ) and G’ = (V’, E’) suppose their exists a function 

f : V � V’ such that (i)  f is a none to one correspondence and(ii) for all vertices A, B of 

G {A, B} is an edge of G if and only if { f(A), f(B)} is an edge of G’, then f is called as 

isomorphism between G and G’, and we say that G and G’ are isomorphic graphs.  

In other words, two graphs G and G’ are said to be isomorphic (to each other) if 

there is a one to one correspondence between their vertices and between their edges such 

that the adjacency of vertices is preserved such graphs will have the same structures, 

differing only in the way their vertices and edges are labelled or only in the way they are 

represented geometrically for any purpose, we regard them as essentially the same 

graphs. 

When G and G’ are isomorphic we write G 
 G’ 

Where a vertex A of G corresponds to the vertex A’ = f(A) of G’ under a one to one 

correspondence f : G  �  G’, we  write A �� A’  Similarly , we write {A, B} ��  

{A’, B’} to mean that the edge AB of G and the edge A’B’ of G’ correspond to each 

other, under f. 

For example, look at the graphs shown in fig1.46 
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Consider the following one to one  correspondence between between the vertices of these 

two graphs. 

A�� P, B ��Q, C �� R, D �� S 

Under this correspondence, the edges in two graphs correspond with each other as 

indicated below: 

{A, B} �� {P, Q}, {A, C} �� {P, R}, {A, D} �� {P, S}    

{B, C} �� {Q, R}, {B, D} �� {Q, S}, {C, D} �� {R, S}, 

We check that the above indicated one to cone correspondence between the     

Vertices / edges of the two graphs.  Preserves the adjacency of the vertices.  The 

existence of this correspondence proves that the two graphs are isomorphic (note that 

both the graphs represent the complete graph K4). 

Next, consider the graphs shown in figures 1.47 (a) and 1.47(b) 

  

 

 

 

 

 

We observe that the two graphs have the same mumber of vertices but different 

number of edges.  Therefore, although there can exist one-to-one correspondence 

between the vertices, there cannot be a one-to-one correspondence between the edges.  

The two graphs are therefore not isomorphic. 

From the definition of isomorphism of graphs, it follows that if two graphs are 

isomorphic, then they must have  

1. The same number of vertices. 

2. The same number of edges. 

3. An equal number of vertices with a given degree. 

These conditions are necessary but not sufficient.  This means that two graphs for 

which these conditions hold need not be isomorphic. 

In particular, two graphs of the same order and the same size need not be isomorphic. To 

see this, consider the graphs shown in figures 1.48(a) and (b). 

.

Fig. 1.47

. .
Fig. (a)

.

. .

Fig. (b)
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Fig.1.48(a) 

 

 

 

 

 

 

We note that both graphs are of order 4 and size 3. But the two graphs are not 

isomorphic.  Observe that there are two pendant vertices in the first graph where as there 

are three pendant vertices in the second graph.  As such, under any one-to-one 

correspondence between the vertices and the edges of the two graphs, the adjacency of 

vertices is not preserved 

Example 1: 

Prove that the two graphs shown below are isomorphic. 

Fig.1.49 

 

 

 

 

 

 

Solution:  We first observe that both graphs have four vertices and four edges.  Consider 

the following one – to- one correspondence between the vertices of the graphs. 

u1 �� v1, u2 �� v4, u3 �� v3, u4 �� v2. 

This correspondence give the following correspondence between the edges. 

{u1,u2} �� {v1,v4} , {u1,u3} �� {v1,v3} 

{u2,u4} �� {v4,v2}, {u3, u4} �� {v3, v2}. 

These represent one-to-one correspondence between the edges of the two graphs 

under which the adjacent vartices in the first graph correspond to adjacent vertices in the 

second graph and vice-versa. 

Fig. (a) Fig. (b)

. .

. .

.

. .

.

.

.

.
U3

U1 U2

U4

.

.

.

.
v3

v1 v2

v4
Fig. (a) Fig. (b)
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Example  2:  Show that the following graphs are not isomorphic. 

 

 

 

 

 

 

 

Solution:  We note that each of the two graphs has 6 vertices and nine edges.  But, the 

first graph has 2 vertices of degree 4 where as the second graph has 3 vertices of degree 

4.  Therefore, there cannot be anyone-to-one correspondence between the vertices and 

between the edges of the two graphs which preserves the adjacency of vertices.  As such, 

the two graphs are not isomorphic. 

Fig. 1.50

.
. .

. .
.

Fig. (a) Fig. (b)

. .

.

. . .
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UNIT II 
Introduction the Graph Theory Contd.: Planner Graphs, Hamiloton Paths and 

Cycles, Graph Colouring and Chromatic Polynomials.  

 

PLANAR GRAPHS: 

It has been indicated that a graph can be represented by more than one 

geometrical drawing.  In some drawing representing graphs the edges intersect (cross 

over) at points which are not vertices of the graph and in some others the edges meet only 

at the vertices.  A graph which can be represented by at least one plane drawing in which 

the edges meet only at vertices is called a ‘planar graph’ 

On the other hand, a graph which cannot be represented by a plane drawing in 

which the edges meet only at the vertices is called a non planar graph. 

In other words, a non planar graph is a graph whose every possible plane drawing 

contains at least two edges which intersect each other at points other than vertices. 

Example 1 

Show that (i) a graph of order 5 and size 8, and (ii) a graph of order 6 and size 12, 

are planar graphs. 

Solution:  A graph of order 5 and size 8 can be represented by a plane drawing 

 

 

 

 

 

 

In which the edges of the graph meet only at the vertices, as shown in fig. 2.1 (a) 

therefore, this graph is a planar graph.  Similarly, fig. 2.1(b) shows that a graph of order 6 

and size 12 is a planar graph. 

Fig. 2.1

.

.

.

.

Fig. (a) Fig. (b)
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Example 2: 

Show that the complete graphs K2,K3 and K4 are planar graphs. 

 

 

 

 

 

 

Solution:  the diagrams in fig 2.2 represent the graphs K2,K3,K4.  In none of these 

diagrams, the edge meet at points other than the vertices. Therefore K2, K3, K4 are all 

planar graphs. 

Example 3: 

Show that the bipartite graphs K2.2 and K2,3 are planar graphs. 

 

 

 

 

 

 

 

 

Solution:  In K2,2, the vertex set is made up of two bipartites V1,V2, with V1 containing 

two vertices say V1,V2 and V2 containing two vertices, say V3,V4, and there is an edge 

joining every vertex in V1 with every vertex in V2 and vice-versa.  Fig 2.3(a) represents 

this graph.  In this fig. the edges meet only at the vertices therefore, K2,2 is a planar graph. 

In K2,3 the vertex set is made up of two bipartites V1 and V2, with V1 containing 

two vertices, say V1,V2, and V2 containing three vertices, say V3,V4,V5 and there is an 

edge joining every vertex in V1 with every vertex in V2and Vice Versa.  Fig. 2.3(b) 

represents this graph.  In this figure the edges meet only at the vertices, therefore K2,3 is a 

planar graph. 

Fig. 2.2

. ...

.

.

.

.
.

K2 K3
K4

Fig. 2.3

.
.

.
.

.
.

. .
V1

V2

V3 V4

V1

V2

V3
V4 V5

(a): K2.2
(a): K2.3
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Example4:   

Show that the complete graph K5 (viz., the Kuratowskis first graph) is a non 

planar graph. 

Solution: 

We first recall that in the complete graph K5 there are 5 vertices and there is an 

edge between every pair of vertices, totaling to 10 edges.  (see fig. Ref. complete graph).  

This fig is repeated below with the vertices named as V1,V2,V3,V4,V5 and the edges 

named e1,e2,e3,……e10 

 

 

 

 

 

In the above drawing of K5, the five edges e1,e5,e8 e10,e4 form a pentagonal cycle 

and the remaining five edges e2,e3,e6,e7,e9 are all 

Inside this cycle and intersect at points other than the vertices. 

Let us try to draw a diagram of K5 in which the edges meet ony at the vertices.  In 

the pentagonal cycle present in fig (2.4) the edges meet only at the vertices.  Let us start 

our new drawing  of K5 with this cycle:  the cycle is shown in fig. 2.5 (a)  

 

 

 

 

 

 

 

 

 

 

 

.
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V3V4

V5

e4 e1
e2

e6

e5

e8

e3e9

e10

Fig. 2.4

e7

Fig. 2.5 
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Fig. (a) Fig. (b)
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Consider the edge e7 = {V2V5}.  This  edge can be drawn either inside or outside 

the pentagonal cycle.  Suppose we draw it inside, as shown in fig. 2.5 (b) the other case is 

similar now, consider the edges e2 = {V1V3} & e3 = {V1V4}.  If we draw these edges also 

inside the pentagon, they will intersect e7, that is, they cross e7 at points, which are not 

vertices, therefore, let us draw of them outside: see fig. 2.5 (b). 

Next consider the edge e6 = {V2,V4} if we draw this edge outside the pentagon 

intersects the edge e2; see fig 2.5(b)  therefore let us draw e6 inside the pentagon. 

Lastly, consider the edge e9 = {V3,V5}If we draw this edge outside the pentagon, 

it intersects the edge e3, and if we draw it inside, it intersects the edge e6. 

 This demonstrates that in every possible plane drawing of K5 at least two edges of K5 

intersect at a point which is not a vertex of K5. 

 This proves that K5 is a non planar graph. 

Example 5:   

  Show that the complete bipartite graph K3,3 (namely the Kuratowski’s second 

graph) is a non-planar graph. 

Solution:   

by definition, K3,3 is a graph with 6 vertices and 9 edges, in which the vertex set is 

made up of two bipartites V1 and V2 each containing three vertices such that every vertex 

in V1 is joined to every vertex in V2 by an edge and vice-versa. 

 

 

 

 

 

 

Let us name the vertices in V1 as v1,v2,v3 and the vertices inV2 as v4,v5,v6.  Also 

let the edges be named as e1,e2,e3,…….e9. 

A diagram of the graph is shown in fig (2.6).  In this diagram of K3,3.  the six 

edges e1 = {v1,v4}, e4={v4v2}, e5 ={v2v5}, e8={v5,v3} e9={v3,v6} and e3={v6,v1} form a 

hexagonal cycle and the remaining three edges e2,e6,e7 either intersect these edges or 

intersect among themselves at points other than the vertices. 

Fig. 2.6
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Let us try to draw a diagram of K3,3 in which no two of its edges intersect.  The 

hexagonal cycle present in fig.2.6 does not contain any mutually intersecting edges.  Let 

us start our new drawing of K3,3 with this cycle.  This cycle is exhibited separately in fig. 

2.7 (a) 

 

 

 

 

 

 

 

Consider three edge e6={v2,v6} this edge can be drawn either inside the hexagonal 

cycle or outside it.  Let us draw it inside (as shown in fig.2.7 (b) the other case is similar. 

Now consider the edge e2 = {v1,v5}.  If we draw this edge the hexagon, it intersects the 

edges e6. Therefore, let us draw it outside the hexagon see fig. 2.7 (b) 

Next consider the edge e7 ={v3,v4}.  If this edge is drawn inside the hexagon, it 

intersects the edgte e6, and if it is drawn outside the hexagon, it intersects the edge e2 

This demonstrates that in every possible plane drawing of K3,3, at least two edges of K3,3 

intersect at a point which is not a vertex of K3,3. this proves that K3,3 is a non planar 

graph. 

Example 6 

Suppose there are three houses and three utility points (electricity, water sewerage, 

say) which are such that each utility point is joined to each house.  Can the lines of 

joining be such that no two lines cross each other ? 

 

 

 

 

 

 

 

Fig. 2.7
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Solution: 

Consider the graph in which the vertices are the three houses (h1,h2,h3) and the three 

utility points (u1,u2,u3).  Since each house is joined to each utility point.  The graph has to 

be K3,3 (see fig. 2.8).  This graph is non-planar and therefore, in its plane drawing, at lest 

two of its edges cross each other.  As such, it is not possible to have the lines joining the 

houses and the utility  points such that no two lines cross each other. 

HAMILTON CYCLES AND HAMILTON PATHS 

Let G be a connected graph.  If there is a cycle in G that contains all the vertices 

of G, then that cycle is called a ‘Hamilton Cycle’ in G. 

A Hamilton cycle in a graph of n vertices consists of exactly n edges, because, a cycle 

with n vertices has n edges. 

By definition, a Hamilton cycle in Graph G must include all vertices in G, This 

does not mean that it should include all edges of G.   

A  graph that contains a Hamilton cycle is called a Hamilton graph (or Hamiltonian 

graph). 

For example, in the graph shown in fig. (2.7), the cycle shown in thick lines is a 

Hamilton cycle.  (observe that this cycle does not include the edge BD). the graph is 

therefore a Hamilton graph. 

 

 

 

 

     Fig.2.7 

A path (if any) in a connected graph which includes every vertex (but not necessarily 

every edge) of the graph is called a Hamilton / Hamiltonian path in the graph. 

For example:  In the graph shown in fig (2.8), The path shown in thick lines is a Hamilton 

path. 
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D C 

A B

D C
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       Fig. 2.8 

In the graph shown in fig. (2.9), the path ABCFEDGHI is a Hamilton path.  We 

check that this graph does not contain a Hamilton cycle. 

 
Since a Hamilton path in a graph G meets every vertex of G, the length of a 

Hamilton path (if any) in a connected graph of n vertices is n-1 (a path with  n vertices 

has n-1 edges) 

Theorem 1: 

If in a simple connected graph with n vertices (where n � 3) The sum of the 

degrees of every pair of non-adjacent vertices is greater than or equal to n, than the graph 

is Hamiltonian. 

Theorem 2: 

If in a simple connected graph with n vertices (where n � 3) the degree of every 

vertex is greater than or equal to n/2.  then the graph is Hamiltonian . 

Proof:If in a simple connected graph with n vertices, the degree of each vertex is greater 

than or equal to n/2. then the sum of the degrees of every pair of adjacent or non-adjacent 

vertices is greater than or equal to n, therefore, the graph is Hamiltonian (by Them 1). 

Example 1:   

Prove that the complete graph Kn where n � 3, is a hamilton graph. 

Solution:  In Kn, the degree of every vertex is n-1, if n � 3, we have n-2 > 0, or 2n-2 > n, 

or (n-1) > n /2. 

Thus, in Kn, where n � 3,  the degree of every vertex is greater than n/2.  Hence Kn is 

Hamiltonian by Them. 2. 

Example 2: 

Show that every simple K - Regular graph with 2K-1 vertices is Hamiltonian. 

Solution:  In a K - Regular graph , the degree of every vertex is K, and K > K – 1/2 = 1/2 

(2K - 1) = 1/2 n.  Where n = 2K-1 is the number of vertices, therefore, by Them. 2, the 

graph considered is Hamiltonian if it is simple. 

A C B 

D 
E 

F 

G H I 

� � 

� � � 

� 

� � � 

fig. (2.9) 
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Example 3: 

Disprove the converses of theorems 1 and 2. 

Solution:  Consider a 2 – Regular graph with n=5, vertices, shown in fig. (2.10) 

 
Evidently, this graph is Hamiltonian.  But the degree of every vertex is 2 which is 

less  than n/2 and the sum of the degrees of every pair of vertices is 4 which is less than n. 

Thus, the converses of theorems 1 & 2 are not necessarily true. 

Example 4: 

Let G be a simple graph with n vertices and m edges where m is at least 3.  if m� 

1/2 (n-1)(n-2)+2.  Prove that G is Hamiltonian.  Is the converse true? 

Solution :   

Let u & v be any two non-adjacent vertices in G.  Let x & y be their respective 

degrees.  If we delete u,v from G, we get a subgraph with   n-2 vertices.  If this subgraph 

has q edges, then q � 1/2 (n-2)(n-3).  [in a simple graph of order n, the number of edges is 

� 1/2n(n-1)] since u and v are non adjacent. 

m =q + x +y, Thus 

x + y=m – q  

�{1/2 (n-1)(n-2)+2} - {1/2(n-2)(n-3)} 

= n 

Therefore, by Theorem 1, the graph is Hamiltonian. 

The converse of the result just proved is not always true.  Because, a 2- Regular graph 

with five vertices shown in fig (2.10) is Hamiltonian but the inequality does not hold. 

Example 5:  Show that the graph shown in fig (2.11) is a Hamilton graph. 

 

Fig. 2.10 
� 

� � 
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Fig. (b) 

� � 

� � 

Fig. (c) 

� � 

� � 

 
 

Solution:   

By examining the given graph, we notice that in the graph there is a cycle 

AELSMNPQRCDFBA which contains all the vertices of the graph.  this cycle is a 

hamiltonian cycle.  since the graph has Hamiltonian cycle in it.  The graph is a 

Hamiltonian graph. 

Example 6: 

  Exhibit the following. 

(a):  A graph which has both an Euler Circuit and a Hamilton cycle. 

Solution:   

The graph shown is the required graph. 

 
 

(b) : A graph which has an Euler circuit but no Hamilton cycle.  

Solution:  The graph shown is the required graph. 

 

 

 

 

(C) A graph which has a Hamilton cycle but no Euler Circuit. 

 

 

 

 

Fig. 2.11 
A B 
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� � 

� � 

Fig. (d) 
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n-3 

n-1 

n 

n-2 

Fig. 2.12 

(d):  A graph which has neither a Hamilton cycle nor an Euler circuit. 

 

 

 

 

 

 

 

The following theorem contains useful information on the existence of Hamilton cycle in 

the complete graph Kn. 

Theorem 3:  In the complete graph with n vertices, where n is an odd number � 3, there 

are (n-1) / 2 edge - disjoint Hamiltonian cycles. 

Proof:   

Let G be a complete graph with n vertices, where n is odd and � 3.  Denote the 

vertices of G by 1,2,3…..n and Represent them as points as shown in fig. (2.12) 

 

 

 

 

 

 

 

 

We note that the polygonal pattern of edges from vertex 1 to vertex n as depicted 

in the fig is a cycle that includes all the vertices of G.  This cycle is therefore a Hamilton 

cycle.  This representation demonstrates that G has at least one Hamilton cycle.  (In the 

fig (2.12)), the vertex 1 is at the centre of a circle and the other vertices are on its 

circumference.  The circle is dotted. 

Now, rotate the polygonal pattern clockwise by  α1, α2, α3, …. αk degrees where 

α1 = 3600/n-1, α2 = 2. 3600/n- 1,  α3 = 3.3600/n-1, …αk=(n-3)/2.      3600 /n-1   
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Fig. 2.13 
� 

� 

� 

� 

� 

� 

� 

Each of these K = (n-3)/2 rotations  gives a Hamilton cycle that has no edge in 

common with any of the preceding ones.  Thus, there exists k = (n-3)/2, new Hamilton 

cycles, all edge - disjoint from the one shown in fig (2.12) and also edge - disjoint among 

themselves thus, in G, there are  exactly. 

1+K = 1 + (n-3)/2 = 1/2 (n-1) 

Mutually edge –disjoint Hamilton cycle. 

This completes the proof of the theorem. 

Example 7:   

How many edge - disjoint Hamilton cycles exist in the complete graph with seven 

vertices?  Also, draw the graph to show these Hamilton cycles. 

Solution:      

According to theorem 3, the complete graph Kn has (n-1)/2 edge - disjoint 

Hamilton cycles when n � 3 and n is add.  When n = 7, their number is (7-1)/2 = 3.  As 

indicated in the proof of Theorem 3 .   

One of these Hamilton cycles appears as shown in fig (2.13) 

 

 

 

 

 

The other two cycles are got by rotating the above shown cycle clock wise through 

angles. 

α1 = 3600/7-1, = 60 , and α2 = 2(3600)/7-1, = 1200  

TRAVELING –SALESMAN PROBLEM : 

A problem closely related to the question of Hamiltonian circuits is the traveling sales 

man problem, stated as follows:  A sales man is required to visit a number of cities during 

a trip, given the distances between the cities, in what order should be travel so as to visit 

every city precisely once and return home, with the minimum mileage traveled ? 

Representing the cities by vertices and the roads between them by edges, we get a graph.  

In this graph, with every edge ei there is associated a real number (the distance in miles, 

say), w(ei) such a graph is called a weighted graph; w(ei) being the weight of edge ei. 
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In our problem, if each of the cities has a road to every other city, we have a 

‘complete weighted graph’.  This graph has numerous Hamiltonian circuits, and we are to 

pick the one that has the smallest sum of distances (or weights) 

The total number of different (not edge - disjoint, of course) Hamiltonian circuits 

in a complete graph of n vertices can be shown to be (n-1)!/2.   

This follows from the fact that starting from any vertex we have n-1 edges to 

choose from the first vertex, n-2 from the second, n-3 from the third, and so on.  These 

being independent choices. 

We get (n-1)! possible number of choices.  This number is, however, divided by 

2, because each Hamiltonian circuit has been counted twice.  

Theoretically, the problem of the traveling salesman can always be solved by 

enumerating all (n-1)! /2 Hamiltonian circuits, calculating the distance traveled in each, 

and then picking the shortest one.  However for a large value of n, the labor involved is 

too great even for a digital computer (try solving it for the 50 state capitals in the united 

states: n = 50). 

The problem is to prescribe a manageable algorithm for finding the shortest route.  

No efficient algorithm for problems of arbitrary size has yet been found, although many 

attempts have been made. Since this problem has applications in operations research, 

some specific  large - scale examples have been worked out.  There are also available 

several heuristic methods of solution that give a route very close to the shortest one. 

SUMMARY: 

In this chapter we discussed the subngraph – a graph that is part of another graph, 

walks, path, circuits, Euler lines, Hamiltonian paths, and Hamiltonian circuits in a graph 

G are its subgraphs with special properties.  A given graph G can be characterized and 

studied in terms of the presence  or absence of these sub graphs.  Many physical 

problems can be represented by graphs and solved by observing the relevant properties of 

the corresponding graphs. 
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Fig. 2.15 

Various types of walks 

Discussed in this chapter are summarized in fig (2.14). The arrows point in the direction 

of increasing restriction. 

 

 

 

 

 

 

Fig. 2.14 Different Types of Walks 

GRAPH COLORING: 

Given a planar or non-planar graph G,  if we assign colors (colours) to its vertices 

in such a way that no two adjacent vertices have (receive) the some color , then we say 

that the graph G is Properly colored.   

In otherwords, proper coloring of a graph means assigning colors to its vertices 

such that adjacent vertices have different colors. 

 

 

 

 

 

 

In fig. (2.15), the first two graphs are properly colored where as the third graph is 

not properly colored. 

By Examining the first two graphs in fig (2.15) which are properly colored , we 

note the following  

i)  A graph can have more than one proper coloring. 

ii) Two non–adjacent vertices in a properly colored graph can have the same color. 

 

Wal
k 

Open Walk Closed 
Walk 

Path Unicursal Line 

Hamiltonian Path 

Circuit Euler Line 

Hamiltonian Circuit Arbitrarily Traceable 
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Fig. 2.16 

(a) 
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(b) 
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V5 

V6 

V8 

CHROMATIC NUMBER: 

A graph G is said to be K–colorable if we can properly color it with K (number 

of) colors. 

A graph G which is K–colorable but not (K-1) – colorable is called a  

‘K – Chromatic graph’. 

In otherwords, a K–Chromatic graph is a graph that can be properly colored with 

K colors but not with less than K colors. 

If a graph G is K–Chromatic, then K is called the chromatic number of G.  Thus, 

the chromatic number of a graph is the minimum number of colors with which the graph 

can be properly colored. The chromatic number of a graph G is usually denoted by  � (G). 

SOME RESULTS: 

i) A graph consisting of only isolated vertices (ie., Null graph) is 1–Chromatic 

(Because no two vertices of such a graph are adjacent and therefore we can assign 

the same color to all vertices). 

ii) A graph with one or more edges is at least 2 -chromatic (Because such a graph has 

at least one pair of adjacent vertices which should have different colors). 

iii) If a graph G contains a graph G1 as a    

      subgraph, then 

           � (G) � � (G1). 

iv. If G is a graph of n vertices, then � (G) �  n. 

v.    � (Kn) = n, for all n � 1. (Because, in Kn,  every two vertices are adjacent and as 

such all the n vertices should have different colors) 

vi.   If a graph G contains Kn as a subgraph, then � (G) �  n. 

Example 1:  Find the chromatic number of each of the following graphs. 
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Solution :   

i) For the graph (a), let us assign a color α to the vertex V1, then for a proper coloring, we 

have to assign a different color to its neighbors V2,V4,V6, since V2, V4, V6 are mutually 

non-adjacent vertices, they can have the same color as V1,  namely α. 

 Thus, the graph can be properly colored with at lest two colors, with the vertices 

V1,V3,V5 having one color α and V2,V4,V6 having a different color   . Hence, the 

chromatic number of the graph is 2. 

ii) For the graph (b) , let us assign the color α to the vertex V1.  Then for a proper 

coloring its neighbours V2,V3 & V4 cannot have the color α.   

Further more, V2, V3,V4 must have different colors, say , �, � .Thus, at least four 

colors are required for a proper coloring of the graph.   

Hence the chromatic number of the graph is 4.  

iii) For the graph (c) , we can assign the same color, say α, to the non-adjacent vertices 

V1, V3, V5.   

Then the vertices V2,V4,V6 consequently V7 and V8 can be assigned the same 

color which is different from both α and  .  Thus, a minimum of three colors are needed 

for a proper coloring of the graph. Hence its chromatic number is 3. 

Example 2:  Find the chromatic numbers of the following graphs. 
 

   Fig. 2.17 

 

 

 

 

 

 

Solution (i):   

We note that the graph (a) is the Peterson graph.  By observing the graph, we note 

that the vertices V1,V3,V6 and V7 can be assigned the same color, say α .  Then the 

vertices V2,V4, V8 and V10 can be assigned the same color,   (other than α) .  Now, the 

vertices V5 and V9 have to be assigned colors other than α and  ;  they can have the 

Fig. 2.17 (b)
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same color �. Thus, a minimum of three colors are required for a proper coloring of this 

graph.  Hence, the chromatic number of this graph is 3. 

Solution (ii) :  

By observing the graph (b),(this graph is called the Herscher graph),we note that 

the vertices V1, V3, V5, V6 and V11 can be assigned the same color α and all the 

remaining vertices: V2,V4, V7,V8, V9 and V10 can be assigned the same color   (other 

than α).  Thus two colors are sufficient  

(one color is not sufficient ) for proper coloring of the graph.  Hence its chromatic 

number is 2. 

Example (3):   

Prove that a graph of order n (� 2) consisting of a single cycle is 2–chromatic if n 

is even and 3 – chromatic if n is odd. 

Solution:   

The graph being considered is shown as below. 

 

 

 

 

 

 

Obviously, the graph cannot be properly colored with a single color.  Assign two 

colors alternatively to the vertices, starting with V1.  Then, the odd vertices, V1, V3, V5 

etc., will have a color α and the even vertices V2, V4, V6 will have a different color .  

Suppose n is even, then the vertex Vn is an even vertex and therefore will have the color 

, and the graph gets properly colored  therefore, the graph is 2–chromatic 

Suppose n is odd, then the vertex Vn is an odd vertex and therefore will have the 

color α and the graph is not properly colored (because, then the adjacent vertices Vn and 

V1   will have the same color α).  To make it properly colored, it is enough if Vn is a 

assigned a third color,  �.  Thus, in this case, the graph is 3-chromatic. 

?
?

?

?

?

? ?

?

?

?

v1

v2
v3

vn

Vn-1

Fig. 2.18
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Example 4:   

Prove that a graph G is 2–chromatic if and only if it is non – null bipartite graph. 

Solution:     

Suppose a graph G is 2 - chromatic.  Then it is non-null and some vertices of G 

have one color, say α and the rest of the vertices have another color, say  .Let V1 be the 

set of vertices having color α and V2 be the set of vertices having color  .Then V1U V2 = 

V.  The vertex set of G , and V1� V2 = � . Also, no two vertices of V1 can be adjacent 

and no two vertices of V2 can be adjacent. As such, every edge in G has one end in V1 

and the other end in V2. Hence G is bipartite graph. 

Conversely, suppose G is a non- null bipartite graph. Then the vertex set of G has 

two bipartites V1 and V2 such that every edge in G has one end in V1 and another end in 

V2. Consequently, G cannot be properly colored with one color ; because then vertices in 

V1 and V2 will have the same color and every edge has both of its ends of the same color. 

Suppose we assign a color α to all vertices in V1 and a different color   to all vertices in 

V2.  This will make a proper coloring of V. Hence  G is 2- Chromatic. 

Example 5 :   

If ∆ (G) is the maximum of the degrees  of the vertices of a graph G, then prove 

that  � (G) �  1+ ∆ (G).      …………..    (i) 

Solution:   

Suppose G contains n = 2 vertices,   then the degrees of both the vertices is 1, so 

that   ∆ (G) =1 ,also � (G) =2 .Hence � (G) = 1+ ∆ (G).       

Thus, the required inequality (i) is verified for n=2. 

Assume that the inequality is true for all graphs with K- vertices.  Consider a graph G� 

with K + 1 vertices.  If we remove any vertex v from G� then the resulting graph H will 

have K vertices  and ∆ (H) � ∆(G�)  . since H has K vertices, the inequality (i) holds for H 

(by the assumption made).  Therefore, � (H) �  1+ ∆ (H). since  ∆ (H) � ∆(G�),  this 

yields � (H) � 1+∆(G�)            

Now, a proper coloring of G� can be achieved by retaining the colors assigned to 

the vertices in H and by assigning a color to V that is different from the colors assigned to 

the vertices adjacent to it. 
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The color  to be assigned to V  can be one of the colors already assigned to a 

vertex in H that is not  adjacent to V.  Thus, a proper  

Coloring of G�can be done without the use of a new color. 

Hence � (G’) =  � (H) �  1+ ∆(G’). 

Thus, if the inequality (1) holds for all graphs with K vertices, it holds for a graph with K 

+ 1 vertices.Hence, by induction, it follows that the inequality (1) holds for all graphs . 

EULER’S FORMULA 

If G is a planar graph, then G can be represented by a diagram in a plane. In 

which the edges meet only at the vertices.  Such a diagram divides the plane in to a 

number of parts called regions (or faces), of which exactly one part is unbounded.  The 

number of edges that form the boundary of a region is called the degree of that region. 

For example, in the diagram of a planar graph shown in fig. (2.20) the diagram 

divides the plane into 6 regions R1,R2,R3,R4,R5,R6. We observe that each of the regions 

R1 to R5 is bounded and the region R6 is unbounded. That is, R1 to R5 are in the interior 

of the graph while  R6 is in the Exterior. 
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We further observe that, the fig (2.20) the boundary of the region R1 is made up of 

two edges.  Therefore, the degree of R1 is 2.  We write this as d(R1) = 2.  The boundary of 

each of the regions R2 and R4 is made up of 3 edges; therefore, d(R2) = d(R4) = 3.  The 

boundary of the region R3 consists of 4 edges of which one is pendant edge. 

Therefore, d(R3) =5. The region R5 is bounded by a single edge (loop) therefore, 

d(R5)=1.The boundary of the exterior region R6 consists of six edges;therefore,d(R6) = 6. 

We note that 

d(R1) +d(R2) +d(R3)+d(R4)+d(R5)+d(R6)=20. 

Which is twice the number of edges in the graph. This  property is analogous to 

the handshaking property and is true for all planar graphs. 

It should be pointed out that the regions are determined by a diagram of a planar 

graph and not by the graph itself. This means that if we change the diagram of the graph, 

the regions determined by the new diagram will be generally different from those 

determined by the old one in the sense that the unbounded region in the old diagram need 

not be unbounded in the new diagram. However, the interesting fact is that the total 

number of regions  in the two diagrams remains the same.  

The proof of this fact is contained in the following Euler’s fundamental 

theorem on planar graphs.  

Theorem:   

A connected planar graph G with n vertices and m edges has exactly m – n +2 

regions in all of its diagrams. 

Proof:   

Let r denote the number of regions in a diagram of G.  The theorem states that, 

r = m – n+ 2 , or  n – m + r = 2  …………(1) 

We give the proof by induction on m. 

If m = 0, then n , must be equal to 1.  Because , if n >1, then G will have 

at least two vertices and there must be an edge connecting them (because G is connected), 

so that  m 	 0  , which is a contradiction. 

If n = 1, a diagram of G determines only one region – the entire plane region (as shown in 

fig 2.21 (a)).   
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Thus , if m = 0, then n = 1 and r = 1 , so that  n-m +r = 2.  This verifies the 

theorem for m = 0. 

 

 

 

 

 

 

 

 

Now, assume that the theorem holds for all graphs with m=k number of edges, 

where k is a non-negative integer. 

Consider a graph Gk+1 with k +1 edges and n vertices.  First, suppose that Gk+1 has 

no cycles in it. Then a diagram of Gk+1 will be of the form shown in fig. 2.21 (b) in which 

the number of vertices will be exactly one more than the number of edges, and the 

diagram will determine only one region–the entire plane region (as in fig. 2.21 (b)).  Thus 

for G k+1, we have, in this case, n = (k+1)+1 and r = 1, so that 

n – (k+1)+r = 2. 

This means that the result (i) is true when m=k+ 1 as well, if G k+1 contains no 

cycles in it. 

Next, suppose GK+1 contains at least one cycle. Let r be the number of regions 

which a diagram of Gk+1 determine.  Consider an edge ‘e ‘ in a cycle and remove it from 

Gk+1. The resulting graph, Gk+1 – e, will have n vertices and (k+1)–1=k edges, and its 

diagram will determine  r-1 regions.  Since Gk+1 – e has k edges, the theorem holds for 

this graph (by the induction assumption made).  

That is we have 

r -  1 = k – n +2,  or n – (k + 1)+r  = 2 

This means that in this case also the result (1) is true when m = k + 1 as well. 

Hence, by induction, it follows that the result (1) is true for all non– negative integers m.  

This completes the proof of the theorem. 

Fig. 2.21
�

R 
� 

(a) (b)

R
� 

� �

�

�

�
� 
�

�
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Corollary I :    

If G is connected simple planar graph with n( �3) vertices, m (>2) edges and r 

regions, then     (i)  m �  (3/2)r    and  (ii) m � 3n-6. 

Proof:  

Since the graph G is simple, it has no multiple edges and no loops. As such, every 

region must be bounded by three or more edges. Therefore, the total number of edges that 

bound all the regions is greater then or equal to 3r.On the other hand, an edge is in the 

boundary of at most two regions. Therefore, the total number of edges that bound all 

regions is less than or equal to 2m.Thus,3r � 2m. or    m � (3/2)r  

This is required result (i) . 

Now, substituting for r from Euler’ s formula in the result just proved, we get m �  

3 / 2  (m-n+2) 

Which simplifies to m � 3n-6. This is required result (ii) 

Corollary 2:   

Kuratowski’ s first graph, K5, is non-planar. 

Proof:  

The graph K5 is simple, connected and has n = 5 vertices and m = 10 edges; refer 

to figure Kuratowski’ s first graph.  If this graph is planar, then by result (ii) of Corollary 

1, we should have m  �  3n – 6; that is 10 � 15 - 6, which is not true.  Therefore, K5 is 

non – planar 

Corollary 3:   

Kuratowski’ s second graph, K3,3, is non-planar. 

Proof: We first note that  K3,3 is simple, connected and has n = 6 vertices and m = 9 

edges; see fig Kuratowski’ s second graph. 

Suppose K3,3 is planar.  By examining the figure Kuratowski’ s graph, we note that K3,3 

has no cycles of length 3.  Therefore by result (iii) of Corollary 1, we should have m  �  

2n – 4; that is, 9 � 12 – 4, which is not true.  Hence, K3,3 is non – planar. 
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Corollary 4:  

Every connected simple planar graph G contains a vertex of degree less than 6. 

 Proof:  

Suppose every vertex of G is of degree greater  than or eual to 6.Then,if 

d1,d2,… … dn   are the degrees of the n vertices of G,we have d1 � 6, d2 � 6,… … . dn � 6. 

Adding these, we get  

d1+d2+… … +dn    � 6 n.        

By handshaking property, the  left hand side of this inequality is equal to 

2m,where m is the number of edges inG,thus,2m �6n, or   3n  �   m. 

On the other hand ,by the result(ii)of corollary 1,(Result (ii) ie m� 3n-6). 

We should  have  m �  3n-6.Thus, 3n  �   m � 3n-6.This cannot be true. 

Therefore, G must have a vertex of degree less than 6. 

Example 1:   

Verify Euler’ s formula for the planar graph shown in figure 2.20. 

Solution:  

The given graph has n=6 vertices, m=10 edges and r=6 regions. Thus,  

n –m + r = 6 – 10 + 6 = 2. 

The Euler’ s formula is thus verified for the given graph.  

Example 2:   

Verify Euler’ s formula for the planar graphs shown below: 

 

 

 

 

 

Fig. 2.22 

 

Solution:   

We observe that the first of the given graphs has n = 17 vertices, m = 34 edges 

and r = 19 regions.  Thus, n – m + r = 17 - 34 + 19 = 2. 

Fig. (a) Fig. (b)
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� 
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� 

� � 

� � 

R1 

R2 

R3 
R4 

Fig. 2.23 

In the second of the given graphs, there are n = 10 vertices, m = 24 edges and r = 16 

regions, so that n – m + r = 10 – 24 + 16 = 12. 

Thus, for both of the given graphs, Euler’ s formula is verified. 

Example 3:   

For the diagram of a planar graph shown below, find the degrees of regions and 

verify that the sum of these degrees is equal to twice the number of edges 

 

 

 

 

 

Solution:  

The diagram has 9 edges and 4 regions.  The region R1 is bound by three edges.  

Therefore, d(R1)=3. Similarly, d(R2)=5, d(R3)=3. 

The infinite region R4 is bound by 5 edges plus a pendant edge. 

Therefore,d(R4)=7. (Recall that while determining the degree of a region, a pendant edge 

is counted twice).   

Accordingly,  

d (R1) + d (R2) + d (R3) + d (R4)  =  18 

                                       = twice the no. of edges. 

Example 4:  

A connected planar graph has 9 vertices with degrees 2,2,3,3,3,4,5,6,6.Find the 

number of regions of G.  

Solution:  

The  given graph has n = 9 vertices. Let m be the number of edges and r be the 

number of regions. 

Therefore by the Handshaking property, we have 

2m = sum of degrees of vertices 

    = 2+2+3+3+3+4+5+6+6 

    = 34. 

Therefore, m = 17. 
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By using Euler’ s formula, we find that 

     r = m - n + 2. 

       = 17-9+2 = 10 

Thus, the given graph has 10 regions. 

Example 5:   

Show that every connected simple planar graph G with less than 12 vertices must 

have a vertex of degree � 4. 

Solution:   

Suppose every vertex of G has degree greater than 4.  Then, if d1, d2, d3 d4, 

… … … .. dn  are the degrees of n vertices of G, we have  

d1  � 5, d2 �5,… …   dn  � 5  so that,        

d1+ d2+ d3 +d4 … … … … .. dn  � 5n,  or 2m  � 5n,by hand shaking property, 

or 5n / 2   �  m… … … … (i) 

On the other hand, Corollary 1 requires m � 3n-6. Thus, we should have, in view 

of (i),  5n/2 � 3n–6  or n � 12… … ..(ii) 

Thus, if every vertex of G has degree greater than 4, then G must have at least 12 

vertices.  Hence, if G has less than 12 vertices, it must have a vertex of degree �  4. 

Example 6:   

Show that if a planar graph G of order n and size m has r regions and k 

components, then n – m + r = k + 1. 

Solution:   

let H1, H2, … … … Hk  be the k components of G. Let the number of vertices, the 

number of edges and the number of non – exterior regions in Hi be ni, mi, ri  

respectively,       i = 1, 2… … … ..,k.  the exterior region is the same for all components.  

Therefore.  � ni = n,             � mi = m, � ri  = r – 1.   

If the exterior region is not considered, then the Euler’ s formula applied to Hi yields 

ni – mi + ri  = 1. 

On summation (from i = 1 to i = k), this yields 

n – m + (r – 1 ) = k,  or n – m + r = k + 1. 
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2.5.1 Chromatic Polynominals: 

Given a connected graph G & � number of different colors, let us take up the 

problem of finding the number of different ways of properly coloring G with these � 

colors. 

First, consider the null graph Nn with n vertices.  In this graph, no two vertices are 

adjacent.  Therefore, a proper coloring of this graph can be done by assigning a single 

color to all the vertices.  Thus, if there are � number of colors, each vertex of the graph 

has � possible choices of colors assigned to it, and as such the graph can be properly 

colored in �n  different ways 

Next consider the complete graph Kn. In this graph, every two vertices are 

adjacent, and as such there must be at least n colors for a proper coloring of the graph. If 

the number of different colors available is �, then the number of ways of properly 

coloring Kn is  

(i) Zero if � < n,   

(ii) One if  � = n,  

(iii) Greater than 1 if � >n.   
 

Let v1, v2, v3… .vn be the vertices of Kn and suppose  � > n.   

For a proper coloring of Kn, the vertex v1 can be assigned any of the � colors, the 

vertex v2 can be assigned any of the remaining   � - 1 colors, the vertex v3 can be 

assigned any of the remaining    � - 2 colors and finally the vertex vn can be assigned any 

of the    � - n+1 colors.  Thus, Kn can be profperly colored in � (� -1)( � -2) ... (� –n+1) 

different ways if  � >n.  

Lastly, consider the graph Ln which is a path consisting of n vertices v1, v2, 

v3… .vn shown below: 

 

 

 

 

 

 
Figure 2.44

v1

v2 v3 v4

Vn-1

vn
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This graph cannot be properly colored with one color, but can be properly colored 

with 2 colors – by assigning one color to v1, v3, v5… … ..   and another color to v2, v4, 

v6… . Suppose there are � � 2 number of colors available.  Then, for a proper coloring of 

the graph, the vertex v1 can be assigned any one of the � colors and each of the remaining 

vertices can be assigned any one of �-1 colors.   

(Bear in mind that alternative vertices can have the same color).  Thus, the graph 

Ln can be properly colored in �(�-1)n-1 different ways. 

The number of different ways of properly coloring a graph G with � number of 

colors is denoted by P(G, �).  Thus, from what is seen in the above three illustrate 

examples, we note that 

(i) P(Nn, �) = �n, 

(ii) P(Kn, �) = 0 if � < n, 

 P(Kn, n) = 1 if � = n, and 

    P(Kn, �) = � (� -1)( � -2) ... (� –n+1) if � > n , 

(iii) P(Ln, �) = � (� -1)n-1 if � �  2 , 

We observe that in each of the above cases,    P(G, �) is a polynominal.  Motivated by 

these cases, we take that P(G, �) is polynomial for all connected graph G.  This 

polynomial is called the Chromatic Polynomial. 

It follows that if a graph G is made up of n parts, G1,G2… .Gn, then P(G, �)  is given by 

the following 

PRODUCT RULE: 

P (G, �) = P (G1, �). P (G2, �)… … … . P (Gn, �) 

In particular, If G is made up of two parts G1  and  G2, then we have P(G, �) =P (G1, �).  

P (G2, �)     so that 

                  P (G2, �) = P (G, �) / P (G1, �) 

DECOMPOSITION THEOREM: 

Let G be a graph and e = {a,b} be an edge of G.  Let Ge = G – e be that subgraph 

of G which is obtained by deleting e from G without deleting vertices a and b*.  Suppose 

we construct a new graph Ge’  by coalescing (identifying / merging) the vertices a and b in 

Ge.  Then Ge’  is subgraph of Ge as well as G. 

The process of obtaining Ge and Ge’  from G is illustrated in Figure 2.45. 
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a c 

b d 

e 

G a c 

b d 
d 

Figure 2.45  

Ge Ge` ( a=b) 

 

 

 

 

 

The following theorem called the Decomposition theorem for chromatic 

polynomials given an expression for P (G, �) in terms of P (Ge, �) and P (Ge’ , �) for a 

connected graph G. 

Theorem 1: 

If G is a connected graph and e = {a,b} is an edge of G, then 

                P (Ge, �) = P (G, �) + P (Ge’ , �)  

Proof:  In a proper coloring of Ge, the vertices a and b can have the same color or 

different colors.  In every proper coloring of G, the vertices a and b have different colors 

and in every proper coloring of Ge’  these vertices have the same color.  Therefore, the 

number of proper colorings of Ge is the sum of the number of proper colorings of G and 

the number of proper colorings of Ge’ . That is,      P (Ge, �) = P (G, �) + P (Ge’ , �) 

This completes the proof of the theorm. 

MULTIPLICATION THEOREM 

The following theorem gives an expression for P(G, �) for a special class of 

graphs. 

Theorem 2:   If a graph G has sub graphs G1 and G2 such that G1UG2 = G and G1�G2 = 

Kn for some posistive intger n, then 

P (G, �) = P (G1, �) . P (G2, �) / �(n) 

Where �(n) =  � (� -1)( � -2) ... (� –n+1)  

Given � > n number of different colors, there are �(n) = � (� -1) (� -1) ( � -2) … ..... (� –

n+1) number of proper colorings of Kn.  For each of these �(n) proper colorings of Kn, 

the product rule yields P (G1,�)/�(n) ways of properly coloring the remaining vertices of 

G1.  Similarly, there are P (G2, �)/�(n) ways of properly coloring the remaining vertices of 

G. As such  
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P(G, �) = P(Kn, �) . P(G1, �) / �(n).P(G2, �) / �(n) 

     = �(n) . P (G1, �) / �(n)  . P (G2, �) / �(n) 

     = P (G1, �)  . P (G2, �) / �(n) 

This completes the proof of the theorem. 

Example 1:  Find the chromatic polynomial for the graph shown in Figure 2.46.  What is 

its chromatic number ? 

 

 

 

We observe that the given graph G is a path of length n = 5, namely L5.  

Therefore, its chromatic polynomial is  

                P (G, �) = �(�-1)n-1  = �(�-1)4 

Next, we note that the chromatic number of the graph is �(G)=2.  (Because, thse 

graph cannot be properly colored with one color but can be properly colored with 2 

colors by assigning two colors to the alternative vertices). 

Example 2:  

Find the chromatic number and the chromatic polynomial for the graph K1,n . 

We note that K1,n  is the complete bipartite graph wherein one bipartite of the vertex set 

has only one vertex, say v, and the other bipartite has n vertices, say v1,v2,… … … .vn.  A 

proper coloring of this graph cannot be done with just one color and but can be done with 

two colors – by assigning one color to v and another color to all of v1,v2,… … … vn.  Thus, 

the chromatic number of this graph is 2. 

If � colors are available, then the vertex v can be colored in � ways and each of 

the vertices v1,v2… … vn can be colored in �-1 ways.  Therefore, the number of ways of 

properly coloring the graph is �(�-1)n. This is the chromatic polynomial for the graph. 

Example 3:  

(a) consider the graph K2,3 shown in Figure 2.47.  Let � denote the  number of colors 

available to properly color the vertices of this graph.  Find: 

(i)  how many proper colorings of the graph have vertices a, b colored the same. 

(ii) how many proper colorings of the graph have vertices a,b colored with different 

colors. 

Figure 2.46
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(iii) The chromatic polynomial of the graph. 

(b) For the graph K2,n what is the chromatic polynomial? 

 

 

 

 

 

(a): (i) If the vertices a and b are to have the same color, then there are � choices for 

coloring the vertex a and only one choice for the vertex b (or vice versa). 

Consequently, there are �–1 choices for each of the vertices x,y,z. Hence, the 

number of proper colorings (in this case) is � (�-1)3 

(ii) If the vertices a and b are to have different colors, then there are � choices for 

coloring the vertex a and �-1 choices for the vertex b (or vice versa).  

Consequently, there are �–2 choices for each of the vertices x,y,z. Hence the 

number of proper colorings (in this case) is � (�-1) (�-2)3. 

(iii) Since the two cases of the vertices a and b have the same color or different 

colors are exhaustive and mutually exclusive, the chromatic polynomial of the 

graph is 

P(K2,3, �) = � (�-1)3 + �(�-1) (�-2)3. 

(b): Let V1 = {a,b} and V2 = {x1,x2,x3,… … … xn} be the two bipartites of K2,n.  Then, if a 

and b are to have the same color, the number of proper colorings of K2,n is � (�-1)n 

as in case (i) above, If a and b are to have different colors, the number of proper 

colorings is �(�-1)(�-2)n,  

as in case (ii) above.  Consequently, the chromatic polynomial for K2,n is 

 

P(K2,n, �) = � (�-1)n + �(�-1) (�-2)n . 

a
x

y

b
z

Figure 2.47 
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Example 4:  Find the chromatic polynomial for the cycle C4 of length 4. 

 

 

 

 

 

 

 

A cycle of length 4, namely C4, is shown in Figure 2.48.  Let us redesignate it as 

G and denote the edge {v2,v3} as e.  Then the graph Ge and Ge’  would be as shown 

below.. 

 

 

 

 

 

We note that the graph Ge is a path with 4 vertices.  Therefore, P(Ge, �) = � (�-1)3  

Also, the graph Ge’  is the graph K3.  Therefore P(Ge’ , �) =�(�-1)(�-2)Accordingly, using 

the decomposition theorem, we find that 

P(C4, �) = P(G,�) = P(Ge, �) - P(Ge’ , �) 

       = � (�-1)3 - � (�-1) (�-2)  

       = �4 – 4 �3 + 6 �2 -3 � . 

This is the chromatic polynomial for the given cycle. 

Example 5:  Find the chromatic polynomial for the graph shown below.  If 5 colors are 

available, in how many ways can the vertices of this graph be properly colored?. 

 

 

 

 

 

v1

v4

v2

v3

Figure 2.48

v1

v4

v2

v3Ge

v1

v4

v2 (=v3)

Ge’

Fig. 2.49

v 5

v 4

v2

v3

v1

Figure 2.50
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Let us denote the given graph by G and the edge {v1,v2} by e.  Then the graph Ge and Ge’  

would be as shown in Figure 2.51. 

 

 

 

 

 

 

Let us redesignate the graph Ge as H and denote the edge {v1,v5} as f.  Then the 

graph Hf and Hf‘ would appear as shown below: 

 

 

 

 

 

 

 

Applying the decomposition theorem to the graphs G and H we note that 

P(G, �)  = P(Ge,�) - P(Ge’ , �) 

      = P(H,�) - P(Ge’ , �) 

      = { P(Hf,�) - P(Hf’ , �)} - P(Ge’ , �) ------------- (1) 

 We observe that both of the graphs Ge’  and Hf’  are the graph K4 and the graph Hf 

is a deconnected graph having N1 ) - null graph of order 1 consisting of the single vertex 

v1) and K4 as components.  Accordingly, 

P(Ge’ , �) = P(Hf‘ �) = P(K4, �) =  �(�-1) (�-2) (�-3) 

 And   P(Hf , �) = P(N1, �) . P(K4, �) 

          =  �. � (�-1) (�-2) (�-3). 

Consequently, expression (i) gives 

P(G, �) =  �. � (�-1) (�-2) (�-3) - 2 �(�-1) (�-2) (�-3) 

 = � (�-1) (�-2) (�-3) (�-2) 

 = � (�-1) (�-2)2 (�-3). 

v5

v4

v2

v3

v1

Ge

v5

v4

v2=v1

v3
Ge’

Figure 2.51

v5 

v4 

v 2 

v 3
Hf 

v4

v 2 

v3
H′f

v 5 (=v1) 

Figure 2.52

v1 
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v1 

v2 

v5 

v4 v3 

Figure 2.54 

This is the chromatic polynomial for the given graph. 

For � = 5, this polynomial gives 

P(G, �) = 5 x 4 x 32 x 2=360. 

This means that if 5 colors are available, the vertices of the graph can be properly colored 

in 360 different ways. 

Example 6: Use  the multiplication  theorem to find P(G, �) for the graph shown in 

Figure (2.50). 

The graph G in figure 2.50 can be regarded as the union of the graphs G1 and G2 

shown in figures 2.53 (a) and 2.53(b) . 

 

 

 

 

 

Fig.2.53 

Then G1� G2  = {v5,v2}Shown in Figure 2.53 (c). 

WE note that G1 is the same as K3,G2 is the same as K4 and G1�G2 is the same as 

K2. Hence, using the multiplication theorem (Theorem 2), we get 

P (G, �) = P (G1, �) . P (G2, �) / �(2). 

             = P (K3, �) . P (K4, �) / �(2) 

      = � (�-1) (�-2) . �(�-1) (�-2) (�-3) / � (�-1) 

             = � (�-1) (�-2)2 (�-3) 

As the chromatic polynomial for the give G. (This result agrees with the result proved in 

example 5) 

Example 7:  Find the chromatic polynomial for the graph shown below: 

 

 

 

 

v4

v2

v3

(b):G2

v5

v5
v2

v1

(a):G1

v5 v2
(c):G1 � G2
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Let us denote the given graph by G and the edge {v1,v5} as e.  Then the graph Ge 

and Ge’  would be as shown below. 

 

 

 

 

Let us redesignate Ge as H and denote the edge {v5,v2} by f.  Then the graphs Hf 

and Hf’are as shown below. 

 

 

 

 

 

Now, we note that Hf’  is the union of the cycles v1v4v2v1 and v2v3v4v2 each of 

which is the same as K3, and that the intersection of these cycles is the edge {v4,v2} 

which is the same as K2. Therefore, by the multiplication theorem, we have 

     P(Hf’ ,�)=P(K3, �).P(K3,�)/�(2) __________ (i) 

Similarly, 

    P(Ge’ ,�)=P(K3,�).P(K3,�)/�(2)  __________ (ii) 

Next, we note that Hf is the union of the cycles v1v2v3v4v1and v5v3v4v5 and that the 

intersection of these cycles is the edge {v4,v3}.  The first of these cycles is C4, the second 

cycle is K3 and the edge {v4,v3} is K2.  Therefore, by the multiplication theorem, we have 

       P(Hf,�)=P(C4,�).P(K3,�)/�(2)     _________ (iii) 

Now, by using the decomposition theorem and the fact that H �Ge, we get. 

P (G, �) = P (Ge, �) - P(Ge’ , �) 

    = P (H, �) - P(Ge’ , �) 

    = P (Hf, �) - P(Hf’ , �) - P(Ge’ , �) 

    =1/�(2){P(C4,�).P(K3,�)-2P(K3,�)P(K3,�)},    

                                                       using (i) – (iii)  

    = P(K3,�)/ �(2) { P(C4,�) - 2P(K3,�)} 

Using the result of Example 4 and the expressions for P(K3,�) & �(2) this becomes 

v1 v2

v5

v4 v3Hf

v1 v2(=v5)

v4 v3Hf’

Figure 2.56

v 2

v5

v4 v 3
Figure 2.55

Ge

v2
v5(=v 1)

v 4 v3
Ge’

v1
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P(G,�) = �(�-1)(�-2)/�(�-1){�{�(�-1)3-(�-1)(�-2)}-2�(�-1)(�-2)} 

  = � (�-1) (�-2) { (�-1)2 - 3(�-2)} 

  = � (�-1) (�-2) (�2 - 5�+7). 

Example 8: Let G = G(V,E) be a graph with a,b � V but {a,b} = e ∉ E. Let Ge+ denote 

the graph obtained by including e into G and Ge++ denote the graph obtained by 

coalescing (merging) the vertices a and b.  Prove that 

P(G, �)= P (Ge+, �) + P (Ge++, 
�) 

Hence find the chromatic polynomial for the graph shown in figure 2.57. 

 

 

 

 

 

 

Let us redesignate Ge+ as H. Then, from the definitions of Ge+ and Ge++, we find 

that He = G and He’  = Ge++.  Now, applying the decomposition theorem to H, we get 

P(He, �)= P(H, �) + P (He’ , �) 

This is the same as  

P(G, �)= P (Ge
+, �) + P (Ge

++, �) 

Which is the required result. 

For the graph G shown in figure 2.57 , if e = {V2 V4}, the graphs Ge+ and Ge++ are as 

shown below: 

 

 

 

 

 

We note that Ge+ is K4 and Ge++ is K3,   Therefore, 

       P(Ge+, �)= P (K4, �) = � (�-1) (�-2) (�-3)   

and P(Ge++, �)= P (K3, �) = � (�-1) (�-2)  

v1

v4

v2

v3

Figure 2.57

v 4

v 2

v 3
Ge

+

v 1

v 4=‘v 2 
v 3 

Ge + 

v1 

Figure 2.58 
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Accordingly, the chromatic polynomial for the given graph is 

P(G, �)= P (Ge+, �) + P (Ge++, 
�) 

 = � (�-1) (�-2) (�-3)  + � (�-1) (�-2) 

 = � (�-1) (�-2)2 . 

Example 9: Prove the following: 

(a) for any graph G, the constant term in P(G, �) is zero. 

(b) For any graph G = G(V,E) with \E\ � 1,  the sum of the coefficients in P(G, �) is zero. 

Solution:  

Let P(G, �)= a0+a1 �+ a2 �2+… + ar �r. Then  

P(G,0)= a0 & P(G,1)= a0+a1+ a2+… … + ar.  

(a)For any graph G, P(G,0) represents the number of ways of properly coloring G with 

zero number of colors.  Since a graph cannot be colored with no color on hand, it 

follows that P(G,0) = 0: that is a0 = 0. 

(b) For any graph G, P(G,1) represents the number of ways of properly coloring G with 1 

color.  If G has at least one edge, G cannot be properly colored with 1 color.  This 

means that, for G = G((V,E) with \E\ � 1, we have 

P(G,1)= 0, that is, a0+a1+ a2+… … … … + ar= 0. 

Exercises 

01.  Determine the chromatic polynomials for the graphs shown below:. 

 

 

 

 

 

Ans 1. � (�-1)2(�-2) . 

Ans 2. � (�-1)2 (�-2)2 . 

Ans 3. � (�-1) (�-2) (�2 - 2 �+2) . 

Ans 4. � (�-1) (�-2)3  

Ans 5. � (�-1) (�-2) (2 �-5). 

Ans 6. � (�-1)2 (�-2)2 . 

 

(i) (ii) (iii) (iv) (v) (vi)

Figure 2.59
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02. If 4 colors are available, in how many different ways can the vertices of each 

graph in Figure 2.59 be properly colored? 

Ans: (i) 72 (ii) 144  (iii) 240  (iv) 96  (v) 72  (vi) 144  

 

03.  For n� 3,Let Gn be the graph obtained by deleting one edge from Kn.  Determine 

P(Gn, �) and �(Gn). 

04.  If Cn denotes a cycle of length n� 3, prove that P(Cn, �) = (�-1)n+(-1)n(�-1) 

05.  If Cn denotes a cycle of length n � 4 , prove that P(Cn, �) + P(Cn-1, �) = �(�-1)n-1 
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